Scalable Multilevel Quantization for Distributed Detection

G. Gul, Michael Basler
{"title":"Scalable Multilevel Quantization for Distributed Detection","authors":"G. Gul, Michael Basler","doi":"10.1109/ICASSP39728.2021.9414032","DOIUrl":null,"url":null,"abstract":"A scalable algorithm is derived for multilevel quantization of sensor observations in distributed sensor networks, which consist of a number of sensors transmitting a summary information of their observations to the fusion center for a final decision. The proposed algorithm is directly minimizing the overall error probability of the network without resorting to minimizing pseudo objective functions such as distances between probability distributions. The problem formulation makes it possible to consider globally optimum error minimization at the fusion center and a person-by-person optimum quantization at each sensor. The complexity of the algorithm is quasi-linear for i.i.d. sensors. Experimental results indicate that the proposed scheme is superior in comparison to the current state-of-the-art.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"18 1","pages":"5200-5204"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A scalable algorithm is derived for multilevel quantization of sensor observations in distributed sensor networks, which consist of a number of sensors transmitting a summary information of their observations to the fusion center for a final decision. The proposed algorithm is directly minimizing the overall error probability of the network without resorting to minimizing pseudo objective functions such as distances between probability distributions. The problem formulation makes it possible to consider globally optimum error minimization at the fusion center and a person-by-person optimum quantization at each sensor. The complexity of the algorithm is quasi-linear for i.i.d. sensors. Experimental results indicate that the proposed scheme is superior in comparison to the current state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式检测的可扩展多水平量化
在分布式传感器网络中,多个传感器向融合中心发送其观测值的汇总信息以进行最终决策,提出了一种可扩展的传感器观测值多级量化算法。该算法直接最小化网络的整体错误概率,而不需要最小化伪目标函数(如概率分布之间的距离)。该问题的表述可以考虑融合中心的全局最优误差最小化和每个传感器的逐人最优量化。该算法的复杂度是准线性的。实验结果表明,该方案优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1