Meldonium: Pharmacological, toxicological, and analytical aspects

D. G. Berlato, A. V. Bairros
{"title":"Meldonium: Pharmacological, toxicological, and analytical aspects","authors":"D. G. Berlato, A. V. Bairros","doi":"10.1177/2397847320915143","DOIUrl":null,"url":null,"abstract":"Meldonium is the active molecule from Mildronate® with similar chemical structure to an amino acid, and it is known as (3-(2,2,2-trimethylhydrazine) propionate) (CAS 76144-81-5). This pharmaceutical substance is approved in Eastern Europe for cerebral and myocardial ischemia and has been on the World Doping Association’s banned substances list since January 2016. The goal of this review is to relate the use of meldonium as a doping agent, considering its pharmacological, toxicological, and analytical aspects. This review is based on the scientific literature from digital platforms. The main mechanism of action of meldonium is based on a decrease in l-carnitine levels and increase of peroxisomes activity in the cytosol. Females were more susceptible to the substance in animal experiments for toxicological tests. There is currently no report in the scientific literature about acute or chronic intoxication cases by meldonium in humans. Based on the literature findings, meldonium showed ergogenic effect in animals and human volunteers. For anti-doping analysis, urine is the biological matrix of choice, and dilute-and-shoot is the most common sample treatment in addition to liquid chromatography–mass spectrometry analysis. Other approaches could be used to determine meldonium levels, mainly for screening tests, such as l-carnitine or gamma-butyrobetaine levels.","PeriodicalId":23155,"journal":{"name":"Toxicology Research and Application","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397847320915143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Meldonium is the active molecule from Mildronate® with similar chemical structure to an amino acid, and it is known as (3-(2,2,2-trimethylhydrazine) propionate) (CAS 76144-81-5). This pharmaceutical substance is approved in Eastern Europe for cerebral and myocardial ischemia and has been on the World Doping Association’s banned substances list since January 2016. The goal of this review is to relate the use of meldonium as a doping agent, considering its pharmacological, toxicological, and analytical aspects. This review is based on the scientific literature from digital platforms. The main mechanism of action of meldonium is based on a decrease in l-carnitine levels and increase of peroxisomes activity in the cytosol. Females were more susceptible to the substance in animal experiments for toxicological tests. There is currently no report in the scientific literature about acute or chronic intoxication cases by meldonium in humans. Based on the literature findings, meldonium showed ergogenic effect in animals and human volunteers. For anti-doping analysis, urine is the biological matrix of choice, and dilute-and-shoot is the most common sample treatment in addition to liquid chromatography–mass spectrometry analysis. Other approaches could be used to determine meldonium levels, mainly for screening tests, such as l-carnitine or gamma-butyrobetaine levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
米屈肼:药理学、毒理学和分析方面
米屈肼是米屈酸盐®的活性分子,具有与氨基酸相似的化学结构,被称为(3-(2,2,2-三甲基肼)丙酸酯(CAS 76144-81-5)。这种药物物质在东欧被批准用于脑和心肌缺血,自2016年1月以来一直在世界兴奋剂协会的禁用物质清单上。本综述的目的是考虑到其药理学、毒理学和分析方面,将米屈肼作为兴奋剂的使用联系起来。这篇综述是基于来自数字平台的科学文献。米屈肼的主要作用机制是基于降低左旋肉碱水平和增加细胞质中过氧化物酶体的活性。在动物毒理学试验中,雌性对该物质更敏感。目前在科学文献中没有关于人类急性或慢性米屈肼中毒病例的报道。根据文献研究结果,米屈肼在动物和人类志愿者中均表现出经人作用。对于反兴奋剂分析,尿液是首选的生物基质,除了液相色谱-质谱分析外,稀释-射击是最常见的样品处理方法。其他方法可用于确定米屈肼水平,主要用于筛选试验,如左旋肉碱或γ -丁甜菜碱水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicted aerosol dosimetry for mouse models of chronic obstructive pulmonary disease, cardiovascular disease and lung cancer Banana peel extract alleviate inflammation and oxidative stress via modulation of the Nrf2/Hmox-1 and NF-κB pathways in thyroid of heavy metal mixture exposed female rats Safety evaluation of oubli fruit sweet protein (brazzein) derived from Komagataella phaffii, intended for use as a sweetener in food and beverages A randomized, open-label, cross-over pilot study investigating metabolic product kinetics of the palatable novel ketone ester, bis-octanoyl (R)-1,3-butanediol, and bis-hexanoyl (R)-1,3-butanediol ingestion in healthy adults Assessment of level of heavy metals in cosmetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1