Comparing Transfer Learning and Traditional Learning Under Domain Class Imbalance

Karl R. Weiss, T. Khoshgoftaar
{"title":"Comparing Transfer Learning and Traditional Learning Under Domain Class Imbalance","authors":"Karl R. Weiss, T. Khoshgoftaar","doi":"10.1109/ICMLA.2017.0-138","DOIUrl":null,"url":null,"abstract":"Transfer learning is a subclass of machine learning, which uses training data (source) drawn from a different domain than that of the testing data (target). A transfer learning environment is characterized by the unavailability of labeled data from the target domain, due to data being rare or too expensive to obtain. However, there exists abundant labeled data from a different, but similar domain. These two domains are likely to have different distribution characteristics. Transfer learning algorithms attempt to align the distribution characteristics of the source and target domains to create high-performance classifiers. This paper provides comparative performance analysis between stateof- the-art transfer learning algorithms and traditional machine learning algorithms under the domain class imbalance condition. The domain class imbalance condition is characterized by the source and target domains having different class probabilities, which can create marginal distribution differences between the source and target data. Statistical analysis is provided to show the significance of the results.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"85 1","pages":"337-343"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Transfer learning is a subclass of machine learning, which uses training data (source) drawn from a different domain than that of the testing data (target). A transfer learning environment is characterized by the unavailability of labeled data from the target domain, due to data being rare or too expensive to obtain. However, there exists abundant labeled data from a different, but similar domain. These two domains are likely to have different distribution characteristics. Transfer learning algorithms attempt to align the distribution characteristics of the source and target domains to create high-performance classifiers. This paper provides comparative performance analysis between stateof- the-art transfer learning algorithms and traditional machine learning algorithms under the domain class imbalance condition. The domain class imbalance condition is characterized by the source and target domains having different class probabilities, which can create marginal distribution differences between the source and target data. Statistical analysis is provided to show the significance of the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
领域类不平衡下迁移学习与传统学习的比较
迁移学习是机器学习的一个子类,它使用来自不同领域的训练数据(源),而不是测试数据(目标)。迁移学习环境的特点是无法获得目标领域的标记数据,因为数据很少或获取成本太高。然而,存在大量来自不同但相似的领域的标记数据。这两个域可能具有不同的分布特征。迁移学习算法试图对齐源域和目标域的分布特征,以创建高性能分类器。在领域类不平衡的情况下,对最先进的迁移学习算法和传统的机器学习算法进行了性能比较分析。域类不平衡情况的特征是源域和目标域具有不同的类概率,这会使源数据和目标数据之间产生边际分布差异。统计分析显示了结果的显著性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1