Noise-based logic locking scheme against signal probability skew analysis

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IET Computers and Digital Techniques Pub Date : 2021-03-31 DOI:10.1049/cdt2.12022
Ahmad Rezaei, Ali Mahani
{"title":"Noise-based logic locking scheme against signal probability skew analysis","authors":"Ahmad Rezaei,&nbsp;Ali Mahani","doi":"10.1049/cdt2.12022","DOIUrl":null,"url":null,"abstract":"<p>Due to integrated circuit (IC) production chain globalisation, several new threats such as hardware trojans, counterfeiting and overproduction are threatening the IC industry. So logic locking is deployed to hinder these security threats. In this technique, an IC is locked, and its functionality is retrieved when the right key is loaded onto it. We propose ‘noise-based’ logic locking, consisting of two separate compliment blocks, which function in three states. By flipping a signal once in the circuit, these modules add corruption to the circuit, whereas either flipping the same signal twice or not flipping leads to the correct functionality. Thus, a low probability skew with a low corruption in the output is obtained by utilisation of these flipping states. We have improved SAT attack resiliency based on time by 17% for a locking block with 14 primary inputs in comparison with the well-known anti-SAT. The area overhead is less in comparison with other schemes, in which extra dummy parts or obfuscation elements are added to their circuit. Also, more crucially, our locking blocks are immune to SPS attack solely. After executing various attacks, retrieved circuits indicate improved overall resiliency against automatic test pattern generation based and approximate guided removal attacks as well.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 4","pages":"279-295"},"PeriodicalIF":1.1000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12022","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

Abstract

Due to integrated circuit (IC) production chain globalisation, several new threats such as hardware trojans, counterfeiting and overproduction are threatening the IC industry. So logic locking is deployed to hinder these security threats. In this technique, an IC is locked, and its functionality is retrieved when the right key is loaded onto it. We propose ‘noise-based’ logic locking, consisting of two separate compliment blocks, which function in three states. By flipping a signal once in the circuit, these modules add corruption to the circuit, whereas either flipping the same signal twice or not flipping leads to the correct functionality. Thus, a low probability skew with a low corruption in the output is obtained by utilisation of these flipping states. We have improved SAT attack resiliency based on time by 17% for a locking block with 14 primary inputs in comparison with the well-known anti-SAT. The area overhead is less in comparison with other schemes, in which extra dummy parts or obfuscation elements are added to their circuit. Also, more crucially, our locking blocks are immune to SPS attack solely. After executing various attacks, retrieved circuits indicate improved overall resiliency against automatic test pattern generation based and approximate guided removal attacks as well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于噪声的信号概率偏斜逻辑锁定方案
由于集成电路(IC)生产链的全球化,一些新的威胁,如硬件木马,假冒和生产过剩威胁集成电路产业。因此,部署逻辑锁定来阻止这些安全威胁。在这种技术中,IC被锁定,当正确的密钥被加载到IC上时,它的功能就会被恢复。我们提出了“基于噪声的”逻辑锁,由两个独立的互补块组成,在三种状态下起作用。通过在电路中翻转一次信号,这些模块增加了电路的损坏,而将相同的信号翻转两次或不翻转都会导致正确的功能。因此,通过利用这些翻转状态,可以获得输出中具有低损坏的低概率倾斜。与众所周知的反SAT相比,我们已经将具有14个主要输入的锁定块基于时间的SAT攻击弹性提高了17%。与在电路中添加额外的虚拟部件或混淆元件的其他方案相比,该方案的面积开销更小。此外,更重要的是,我们的锁定块对SPS攻击完全免疫。在执行各种攻击之后,检索的电路表明针对基于自动测试模式生成和近似引导移除攻击的总体弹性得到了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
期刊最新文献
E-Commerce Logistics Software Package Tracking and Route Planning and Optimization System of Embedded Technology Based on the Intelligent Era A Configurable Accelerator for CNN-Based Remote Sensing Object Detection on FPGAs A FPGA Accelerator of Distributed A3C Algorithm with Optimal Resource Deployment An Efficient RTL Design for a Wearable Brain–Computer Interface Adaptive Shrink and Shard Architecture Design for Blockchain Storage Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1