A chi-square test for detecting multiple joint genetic variants in genome-wide association studies

Iksoo Huh, Sohee Oh, T. Park
{"title":"A chi-square test for detecting multiple joint genetic variants in genome-wide association studies","authors":"Iksoo Huh, Sohee Oh, T. Park","doi":"10.1109/BIBMW.2011.6112457","DOIUrl":null,"url":null,"abstract":"As a result of genotyping technologies, genome-wide association studies (GWAS) have been widely used to identify genetic variants associated with common complex traits. While most GWAS have focused on associations with single genetic variants, the investigation of multiple joint genetic variants is essential for understanding genetic architecture of complex traits because common complex traits are associated with multiple genetic variants. However, it is not easy to conduct the multiple joint genetic variants analysis and to identify high order interactions using a number of genetic variants in GWAS. In this study, we propose a stepwise method based on the Chi-square test in order to identify causal joint multiple genetic variants in GWAS. Through simulation studies, we examine the properties of the stepwise method and then apply the proposed method to a GWA data for detecting joint multiple genetic variants for age-related macular degeneration.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"9 1","pages":"708-713"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As a result of genotyping technologies, genome-wide association studies (GWAS) have been widely used to identify genetic variants associated with common complex traits. While most GWAS have focused on associations with single genetic variants, the investigation of multiple joint genetic variants is essential for understanding genetic architecture of complex traits because common complex traits are associated with multiple genetic variants. However, it is not easy to conduct the multiple joint genetic variants analysis and to identify high order interactions using a number of genetic variants in GWAS. In this study, we propose a stepwise method based on the Chi-square test in order to identify causal joint multiple genetic variants in GWAS. Through simulation studies, we examine the properties of the stepwise method and then apply the proposed method to a GWA data for detecting joint multiple genetic variants for age-related macular degeneration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在全基因组关联研究中检测多个联合遗传变异的卡方检验
由于基因分型技术的发展,全基因组关联研究(GWAS)已被广泛用于鉴定与常见复杂性状相关的遗传变异。虽然大多数GWAS都集中在与单一遗传变异的关联上,但由于常见的复杂性状与多个遗传变异相关,因此对多个联合遗传变异的研究对于理解复杂性状的遗传结构至关重要。然而,在GWAS中进行多联合遗传变异分析和利用多个遗传变异识别高阶相互作用并不容易。在本研究中,我们提出了一种基于卡方检验的逐步方法,以确定GWAS的因果联合多遗传变异。通过仿真研究,我们检验了逐步方法的特性,然后将所提出的方法应用于GWA数据,用于检测关节多遗传变异的年龄相关性黄斑变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1