On the Convergence of Hypergeometric to Binomial Distributions

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Science and Information Systems Pub Date : 2023-07-24 DOI:10.5539/cis.v16n3p15
Upul Rupassara, B. Sedai
{"title":"On the Convergence of Hypergeometric to Binomial Distributions","authors":"Upul Rupassara, B. Sedai","doi":"10.5539/cis.v16n3p15","DOIUrl":null,"url":null,"abstract":"This study presents a measure-theoretic approach to estimate the upper bound on the total variation of the di erence between hypergeometric and binomial distributions using the Kullback-Leibler information divergence. The binomial distribution can be used to find the probabilities associated with the binomial experiments. But if the sample size is large relative to the population size, the experiment may not be binomial, and a binomial distribution is not a good choice to find the probabilities associated with the experiment. The hypergeometric probability distribution is the appropriate probability model to be used when the sample size is large compared to the population size. An upper bound for the total variation in the distance between the hypergeometric and binomial distributions is derived using only the sample and population sizes. This upper bound is used to demonstrate how the hypergeometric distribution uniformly converges to the binomial distribution when the population size increases relative to the sample size.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"257 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5539/cis.v16n3p15","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a measure-theoretic approach to estimate the upper bound on the total variation of the di erence between hypergeometric and binomial distributions using the Kullback-Leibler information divergence. The binomial distribution can be used to find the probabilities associated with the binomial experiments. But if the sample size is large relative to the population size, the experiment may not be binomial, and a binomial distribution is not a good choice to find the probabilities associated with the experiment. The hypergeometric probability distribution is the appropriate probability model to be used when the sample size is large compared to the population size. An upper bound for the total variation in the distance between the hypergeometric and binomial distributions is derived using only the sample and population sizes. This upper bound is used to demonstrate how the hypergeometric distribution uniformly converges to the binomial distribution when the population size increases relative to the sample size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于超几何到二项分布的收敛性
本文提出了一种利用Kullback-Leibler信息散度估计超几何分布和二项分布之差的总变异上界的测度理论方法。二项分布可以用来找到与二项实验相关的概率。但是,如果样本量相对于总体规模较大,则实验可能不是二项分布,并且二项分布不是寻找与实验相关的概率的好选择。当样本量大于总体时,超几何概率分布是合适的概率模型。超几何分布和二项分布之间距离总变化的上界仅使用样本和总体大小推导。这个上界用于演示当总体大小相对于样本量增加时,超几何分布如何均匀收敛于二项分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Science and Information Systems
Computer Science and Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
2.30
自引率
21.40%
发文量
76
审稿时长
7.5 months
期刊介绍: About the journal Home page Contact information Aims and scope Indexing information Editorial policies ComSIS consortium Journal boards Managing board For authors Information for contributors Paper submission Article submission through OJS Copyright transfer form Download section For readers Forthcoming articles Current issue Archive Subscription For reviewers View and review submissions News Journal''s Facebook page Call for special issue New issue notification Aims and scope Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.
期刊最新文献
Reviewer Acknowledgements for Computer and Information Science, Vol. 16, No. 3 Drawbacks of Traditional Environmental Monitoring Systems Improving the Classification Ability of Delegating Classifiers Using Different Supervised Machine Learning Algorithms Reinforcement learning - based adaptation and scheduling methods for multi-source DASH On the Convergence of Hypergeometric to Binomial Distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1