{"title":"Light RAT-SQL: A RAT-SQL with More Abstraction and Less Embedding of Pre-existing Relations","authors":"Nathan Manzambi Ndongala","doi":"10.21522/tijar.2014.10.02.art001","DOIUrl":null,"url":null,"abstract":"RAT-SQL is among the popular framework used in the Text-To-SQL challenges for jointly encoding the database relations and questions in a way to improve the semantic parser. In this work, we propose a light version of the RAT-SQL where we dramatically reduced the number of the preexisting relations from 55 to 7 (Light RAT-SQL-7) while preserving the same parsing accuracy. To ensure the effectiveness of our approach, we trained a Light RAT-SQL-2, (with 2 embeddings) to show that there is a statistically significant difference between RAT-SQL and Light RAT-SQL-2 while Light RAT-SQL-7 can compete with RAT-SQL. Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware Transformer, RAT-SQL, Text-To-SQL, Transformer.","PeriodicalId":22213,"journal":{"name":"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21522/tijar.2014.10.02.art001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
RAT-SQL is among the popular framework used in the Text-To-SQL challenges for jointly encoding the database relations and questions in a way to improve the semantic parser. In this work, we propose a light version of the RAT-SQL where we dramatically reduced the number of the preexisting relations from 55 to 7 (Light RAT-SQL-7) while preserving the same parsing accuracy. To ensure the effectiveness of our approach, we trained a Light RAT-SQL-2, (with 2 embeddings) to show that there is a statistically significant difference between RAT-SQL and Light RAT-SQL-2 while Light RAT-SQL-7 can compete with RAT-SQL. Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware Transformer, RAT-SQL, Text-To-SQL, Transformer.