{"title":"Visually smooth multi-UAV formation transformation","authors":"Xinyu Zheng , Chen Zong , Jingliang Cheng , Jian Xu , Shiqing Xin , Changhe Tu , Shuangmin Chen , Wenping Wang","doi":"10.1016/j.gmod.2021.101111","DOIUrl":null,"url":null,"abstract":"<div><p>Unmanned airborne vehicles (UAVs) are useful in both military and civilian operations. In this paper, we consider a recreational scenario, i.e., multi-UAV formation transformation show. A visually smooth transformation needs to enforce the following three requirements at the same time: (1) visually pleasing contour morphing - for any intermediate frame, the agents form a meaningful shape and align with the contour, (2) uniform placement - for any intermediate frame, the agents are (isotropically) evenly spaced, and (3) smooth trajectories - the trajectory of each agent is as rigid/smooth as possible and completely collision free. First, we use the technique of 2-Wasserstein distance based interpolation to generate a sequence of intermediate shape contours. Second, we consider the spatio-temporal motion of all the agents altogether, and integrate the uniformity requirement and the spatial coherence into one objective function. Finally, the optimal formation transformation plan can be inferred by collaborative optimization.</p><p>Extensive experimental results show that our algorithm outperforms the existing algorithms in terms of visual smoothness of transformation, boundary alignment, uniformity of agents, and rigidity of trajectories. Furthermore, our algorithm is able to cope with some challenging scenarios including (1) source/target shapes with multiple connected components, (2) source/target shapes with different typology structures, and (3) existence of obstacles. Therefore, it has a great potential in the real multi-UAV light show. We created an animation to demonstrate how our algorithm works; See the demo at <span>https://1drv.ms/v/s!AheMg5fKdtdugVL0aNFfEt_deTbT?e=le5poN</span><svg><path></path></svg> .</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"116 ","pages":"Article 101111"},"PeriodicalIF":2.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gmod.2021.101111","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070321000163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4
Abstract
Unmanned airborne vehicles (UAVs) are useful in both military and civilian operations. In this paper, we consider a recreational scenario, i.e., multi-UAV formation transformation show. A visually smooth transformation needs to enforce the following three requirements at the same time: (1) visually pleasing contour morphing - for any intermediate frame, the agents form a meaningful shape and align with the contour, (2) uniform placement - for any intermediate frame, the agents are (isotropically) evenly spaced, and (3) smooth trajectories - the trajectory of each agent is as rigid/smooth as possible and completely collision free. First, we use the technique of 2-Wasserstein distance based interpolation to generate a sequence of intermediate shape contours. Second, we consider the spatio-temporal motion of all the agents altogether, and integrate the uniformity requirement and the spatial coherence into one objective function. Finally, the optimal formation transformation plan can be inferred by collaborative optimization.
Extensive experimental results show that our algorithm outperforms the existing algorithms in terms of visual smoothness of transformation, boundary alignment, uniformity of agents, and rigidity of trajectories. Furthermore, our algorithm is able to cope with some challenging scenarios including (1) source/target shapes with multiple connected components, (2) source/target shapes with different typology structures, and (3) existence of obstacles. Therefore, it has a great potential in the real multi-UAV light show. We created an animation to demonstrate how our algorithm works; See the demo at https://1drv.ms/v/s!AheMg5fKdtdugVL0aNFfEt_deTbT?e=le5poN .
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.