{"title":"Peak fraction of infected in epidemic spreading for multi-community networks","authors":"Jing Ma, Xiangyi Meng, L. Braunstein","doi":"10.1093/comnet/cnac021","DOIUrl":null,"url":null,"abstract":"\n One of the most effective strategies to mitigate the global spreading of a pandemic (e.g. coronavirus disease 2019) is to shut down international airports. From a network theory perspective, this is since international airports and flights, essentially playing the roles of bridge nodes and bridge links between countries as individual communities, dominate the epidemic spreading characteristics in the whole multi-community system. Among all epidemic characteristics, the peak fraction of infected, $I_{\\max}$, is a decisive factor in evaluating an epidemic strategy given limited capacity of medical resources but is seldom considered in multi-community models. In this article, we study a general two-community system interconnected by a fraction $r$ of bridge nodes and its dynamic properties, especially $I_{\\max}$, under the evolution of the susceptible-infected-recovered model. Comparing the characteristic time scales of different parts of the system allows us to analytically derive the asymptotic behaviour of $I_{\\max}$ with $r$, as $r\\rightarrow 0$, which follows different power-law relations in each regime of the phase diagram. We also detect crossovers when $I_{\\max}$ changes from one power law to another, crossing different power-law regimes as driven by $r$. Our results enable a better prediction of the effectiveness of strategies acting on bridge nodes, denoted by the power-law exponent $\\epsilon_I$ as in $I_{\\max}\\propto r^{1/\\epsilon_I}$.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"128 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnac021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
One of the most effective strategies to mitigate the global spreading of a pandemic (e.g. coronavirus disease 2019) is to shut down international airports. From a network theory perspective, this is since international airports and flights, essentially playing the roles of bridge nodes and bridge links between countries as individual communities, dominate the epidemic spreading characteristics in the whole multi-community system. Among all epidemic characteristics, the peak fraction of infected, $I_{\max}$, is a decisive factor in evaluating an epidemic strategy given limited capacity of medical resources but is seldom considered in multi-community models. In this article, we study a general two-community system interconnected by a fraction $r$ of bridge nodes and its dynamic properties, especially $I_{\max}$, under the evolution of the susceptible-infected-recovered model. Comparing the characteristic time scales of different parts of the system allows us to analytically derive the asymptotic behaviour of $I_{\max}$ with $r$, as $r\rightarrow 0$, which follows different power-law relations in each regime of the phase diagram. We also detect crossovers when $I_{\max}$ changes from one power law to another, crossing different power-law regimes as driven by $r$. Our results enable a better prediction of the effectiveness of strategies acting on bridge nodes, denoted by the power-law exponent $\epsilon_I$ as in $I_{\max}\propto r^{1/\epsilon_I}$.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network