N. Bui, T. Hoang, P. N. Nguyen, Nguyen Le My Linh, Q. Trieu, T. H. Bui
{"title":"Magnetic nanocomposites prepared from red mud and durian husk as an effective bio-adsorbent for methylene blue adsorption","authors":"N. Bui, T. Hoang, P. N. Nguyen, Nguyen Le My Linh, Q. Trieu, T. H. Bui","doi":"10.2166/aqua.2023.051","DOIUrl":null,"url":null,"abstract":"\n \n An increasing interest in nanocomposites prepared from agricultural/industrial byproducts has been paid for environmental remediation, especially in water treatment. This study reports the facile preparation of a low-cost magnetic biocomposite of magnetic Fe3O4 nanoparticles (NPs) incorporated with biopolymers extracted from durian husk, called bp-Fe3O4 and examined in the removal of methylene blue (MB) dye. Here, Fe2O3 NPs were first recovered from red mud waste and then converted to magnetic nanostructured Fe3O4 using a one-pot process via carbon combustion. The bp-Fe3O4 inherited the characteristics of each constituent component, while showing slightly higher saturation magnetization than the bare Fe3O4 NPs (19.84 and 18.66 emu/g, respectively), allowing for easy separation from the aqueous solution using a suitable magnet. The MB adsorption on bp-Fe3O4 reached an equilibrium state within 60 min reaction and achieved >90% of removal (at 50 mg/L MB) at an optimal pH range of 6–8. The effective adsorption of MB dye was attributed to both the hydroxylated-Fe3O4 NPs and biopolymers. The material showed excellent reusability tested up to the seventh MB adsorption cycle (decreased by <2% of adsorption efficiency). Overall, the outstanding magnetic properties and low-cost bp-Fe3O4 rendered them easily manipulated and separated, and reusable for water/wastewater treatment of MB dye.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/aqua.2023.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
An increasing interest in nanocomposites prepared from agricultural/industrial byproducts has been paid for environmental remediation, especially in water treatment. This study reports the facile preparation of a low-cost magnetic biocomposite of magnetic Fe3O4 nanoparticles (NPs) incorporated with biopolymers extracted from durian husk, called bp-Fe3O4 and examined in the removal of methylene blue (MB) dye. Here, Fe2O3 NPs were first recovered from red mud waste and then converted to magnetic nanostructured Fe3O4 using a one-pot process via carbon combustion. The bp-Fe3O4 inherited the characteristics of each constituent component, while showing slightly higher saturation magnetization than the bare Fe3O4 NPs (19.84 and 18.66 emu/g, respectively), allowing for easy separation from the aqueous solution using a suitable magnet. The MB adsorption on bp-Fe3O4 reached an equilibrium state within 60 min reaction and achieved >90% of removal (at 50 mg/L MB) at an optimal pH range of 6–8. The effective adsorption of MB dye was attributed to both the hydroxylated-Fe3O4 NPs and biopolymers. The material showed excellent reusability tested up to the seventh MB adsorption cycle (decreased by <2% of adsorption efficiency). Overall, the outstanding magnetic properties and low-cost bp-Fe3O4 rendered them easily manipulated and separated, and reusable for water/wastewater treatment of MB dye.