Kernel ridge reconstruction for anomaly detection: general and low computational reconstruction

Yasutaka Furusho, Shuhei Nitta, Y. Sakata
{"title":"Kernel ridge reconstruction for anomaly detection: general and low computational reconstruction","authors":"Yasutaka Furusho, Shuhei Nitta, Y. Sakata","doi":"10.1109/ICMLA52953.2021.00036","DOIUrl":null,"url":null,"abstract":"Autoencoders (AEs) have been widely used for anomaly detection because models trained to reconstruct a normal data are expected to have a higher reconstruction error for anomalous data than that for normal data, and the higher error is adopted as a criterion for identifying anomalies. However, the high capacity of AEs is sometimes able to reconstruct anomalous data even when trained only on normal data, which leads to overlooked anomalies. To remedy this problem, we propose a kernel ridge reconstruction (KRR) approach for general, high-performance, and low computational anomaly detection. KRR replaces the non-linear decoder network of the AE with a linear regressor, which uses the weighted sum of training normal data for reconstruction, and thus prevents the reconstruction of anomalous data. We also reveal the desired property of the encoder for KRR to achieve high anomaly detection performance and propose an effective training algorithm to realize such property by instance discrimination and feature decorrelation. In addition, KRR reduces the computational cost because it replaces the non-linear decoder network with a linear regressor. Our experiments on MNIST, CIFAR10, and KDDCup99 datasets prove its applicability, high performance, and low computational cost. In particular, KRR achieved an area under the curve (AUC) of 0.670 with 12 millions multiply-accumulate operations (MACs) on the CIFAR10 dataset, outperforming a recent reconstruction-based anomaly detection method (MemAE) with a 1.1-fold higher AUC and 0.291 as many MACs.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"73 1","pages":"185-190"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autoencoders (AEs) have been widely used for anomaly detection because models trained to reconstruct a normal data are expected to have a higher reconstruction error for anomalous data than that for normal data, and the higher error is adopted as a criterion for identifying anomalies. However, the high capacity of AEs is sometimes able to reconstruct anomalous data even when trained only on normal data, which leads to overlooked anomalies. To remedy this problem, we propose a kernel ridge reconstruction (KRR) approach for general, high-performance, and low computational anomaly detection. KRR replaces the non-linear decoder network of the AE with a linear regressor, which uses the weighted sum of training normal data for reconstruction, and thus prevents the reconstruction of anomalous data. We also reveal the desired property of the encoder for KRR to achieve high anomaly detection performance and propose an effective training algorithm to realize such property by instance discrimination and feature decorrelation. In addition, KRR reduces the computational cost because it replaces the non-linear decoder network with a linear regressor. Our experiments on MNIST, CIFAR10, and KDDCup99 datasets prove its applicability, high performance, and low computational cost. In particular, KRR achieved an area under the curve (AUC) of 0.670 with 12 millions multiply-accumulate operations (MACs) on the CIFAR10 dataset, outperforming a recent reconstruction-based anomaly detection method (MemAE) with a 1.1-fold higher AUC and 0.291 as many MACs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异常检测的核脊重建:一般和低计算重建
自编码器(ae)被广泛用于异常检测,因为用于重建正常数据的训练模型对异常数据的重建误差比正常数据的重建误差要高,并且更高的误差被用作识别异常的标准。然而,即使只在正常数据上训练,高容量的ae有时也能够重建异常数据,这导致了被忽视的异常。为了解决这个问题,我们提出了一种核脊重构(KRR)方法,用于通用、高性能和低计算的异常检测。KRR用线性回归器代替声发射的非线性解码器网络,利用训练正常数据的加权和进行重构,从而避免了异常数据的重构。我们还揭示了KRR编码器为实现高异常检测性能所需要的特性,并提出了一种有效的训练算法,通过实例识别和特征去相关来实现这种特性。此外,由于KRR用线性回归器代替了非线性解码器网络,降低了计算成本。我们在MNIST、CIFAR10和KDDCup99数据集上的实验证明了它的适用性、高性能和低计算成本。特别是,KRR在CIFAR10数据集上通过1200万次乘法累积操作(mac)获得了0.670的曲线下面积(AUC),优于最近基于重建的异常检测方法(MemAE), AUC高1.1倍,mac数为0.291。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1