Systematic Optimization of Programmable QRD Implementation for Multiple Application Scenarios

Min Li, J. Absar, B. Bougard, L. Perre, F. Catthoor
{"title":"Systematic Optimization of Programmable QRD Implementation for Multiple Application Scenarios","authors":"Min Li, J. Absar, B. Bougard, L. Perre, F. Catthoor","doi":"10.1109/SIPS.2007.4387510","DOIUrl":null,"url":null,"abstract":"Orthogonal-Triangular Decomposition (QRD) is one of the most fundamental signal processing primitives based on complex matrix operations [1]. It forms the core of many advanced multi-dimension and statistical signal processing algorithms that utilize orthogonalization, projection, and rank-revealing principles. Especially in the domain of wireless signal processing, many emerging algorithms in MIMO and OFDM systems have explicit or implicit connections to QRD [2]. This paper is about the systematic optimization of QRD implementation on programmable architectures. Based on the analysis of existing works, we introduce the following higher level components to the new optimization methodology: (1) Exploring high level algorithmic alternatives. (2) Categorizing different application scenarios. (3) Merging cascaded matrix operations. The systematic optimization brings significant improvements for programmable QRD implementations. Comparing to the widely accepted implementation in Numerical Receipts [3], our work achieves up to 79.76% cycle count reduction on TI TMS320C6713, a typical VLIW DSP. Moreover, our work achieves remarkable improvement on the memory subsystem, which is very critical for the power consumption and performance of modern DSP. Specifically, when QRD is used to solve least-square linear equations, our work reduces 99.55% LIP misses and 96.52% LID misses for 32×32 equations.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"15 3 1","pages":"19-24"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonal-Triangular Decomposition (QRD) is one of the most fundamental signal processing primitives based on complex matrix operations [1]. It forms the core of many advanced multi-dimension and statistical signal processing algorithms that utilize orthogonalization, projection, and rank-revealing principles. Especially in the domain of wireless signal processing, many emerging algorithms in MIMO and OFDM systems have explicit or implicit connections to QRD [2]. This paper is about the systematic optimization of QRD implementation on programmable architectures. Based on the analysis of existing works, we introduce the following higher level components to the new optimization methodology: (1) Exploring high level algorithmic alternatives. (2) Categorizing different application scenarios. (3) Merging cascaded matrix operations. The systematic optimization brings significant improvements for programmable QRD implementations. Comparing to the widely accepted implementation in Numerical Receipts [3], our work achieves up to 79.76% cycle count reduction on TI TMS320C6713, a typical VLIW DSP. Moreover, our work achieves remarkable improvement on the memory subsystem, which is very critical for the power consumption and performance of modern DSP. Specifically, when QRD is used to solve least-square linear equations, our work reduces 99.55% LIP misses and 96.52% LID misses for 32×32 equations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多应用场景下可编程QRD实现的系统优化
正交三角分解(orthogonal - triangle Decomposition, QRD)是基于复矩阵运算的最基本的信号处理基元之一[1]。它构成了许多先进的多维和统计信号处理算法的核心,这些算法利用正交化、投影和秩揭示原理。特别是在无线信号处理领域,MIMO和OFDM系统中的许多新兴算法都与QRD有显式或隐式的联系[2]。本文是关于QRD在可编程架构上实现的系统优化。在分析现有工作的基础上,我们将以下更高层次的组成部分引入到新的优化方法中:(1)探索高级算法替代方案。(2)对不同应用场景进行分类。(3)归并级联矩阵运算。系统的优化为可编程QRD的实现带来了显著的改进。与数字收据[3]中广泛接受的实现相比,我们的工作在TI TMS320C6713(典型的VLIW DSP)上实现了高达79.76%的周期计数减少。此外,我们的工作在内存子系统上取得了显著的改进,这对现代DSP的功耗和性能至关重要。具体来说,当QRD用于求解最小二乘线性方程时,我们的工作减少了99.55%的LIP缺失和96.52%的LID缺失32×32方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Estimation of Direction of Arrival of Speech Source Using Three Microphones. Optimization of Calibration Algorithms on a Manycore Embedded Platform A signal denoising technique based on wavelets modulus maxima lines and a self-scalable grid classifier Spectral Management of Multiple Wireless Signals Based Cognitive Radio Synthesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1