Single-Pixel Photoacoustic Microscopy with Speckle Illumination

IF 2.2 Q3 COMPUTER SCIENCE, CYBERNETICS International Journal of Intelligent Computing and Cybernetics Pub Date : 2023-01-01 DOI:10.34133/icomputing.0011
A. Caravaca-Aguirre, F. Poisson, D. Bouchet, N. Stasio, P. Moreau, I. Wang, E. Zhang, P. Beard, C. Prada, C. Moser, D. Psaltis, O. Katz, E. Bossy
{"title":"Single-Pixel Photoacoustic Microscopy with Speckle Illumination","authors":"A. Caravaca-Aguirre, F. Poisson, D. Bouchet, N. Stasio, P. Moreau, I. Wang, E. Zhang, P. Beard, C. Prada, C. Moser, D. Psaltis, O. Katz, E. Bossy","doi":"10.34133/icomputing.0011","DOIUrl":null,"url":null,"abstract":"Wide-field optical-resolution microscopy with structured illumination and single-pixel detection has been the topic of a number of research investigations. Its advantages over point scanning approaches are many and include a faster acquisition rate for sparse samples, sectioning, and super-resolution features. Initially introduced for fluorescence imaging, structured illumination approaches have been adapted and developed for many other imaging modalities. In this paper, we illustrate how speckle illumination, as a particular type of structured illumination, can be exploited to perform optical-resolution photoacoustic microscopy with a single-pixel imaging approach. We first introduce the principle of single-pixel detection applied to photoacoustic imaging and then illustrate in 2 different situations how photoacoustic images may be computationally reconstructed from speckle illumination: In the first situation where the speckle patterns are known through a prior calibration, various reconstruction approaches may be implemented, which are demonstrated experimentally through both scattering layers and multimode optical fibers; in the second situation where the speckle patterns are unknown (blind structured illumination), the so-called memory effect can be harnessed to produce calibration-free photoacoustic images, following the approach initially proposed for fluorescence imaging through thin scattering layers.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"63 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/icomputing.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Wide-field optical-resolution microscopy with structured illumination and single-pixel detection has been the topic of a number of research investigations. Its advantages over point scanning approaches are many and include a faster acquisition rate for sparse samples, sectioning, and super-resolution features. Initially introduced for fluorescence imaging, structured illumination approaches have been adapted and developed for many other imaging modalities. In this paper, we illustrate how speckle illumination, as a particular type of structured illumination, can be exploited to perform optical-resolution photoacoustic microscopy with a single-pixel imaging approach. We first introduce the principle of single-pixel detection applied to photoacoustic imaging and then illustrate in 2 different situations how photoacoustic images may be computationally reconstructed from speckle illumination: In the first situation where the speckle patterns are known through a prior calibration, various reconstruction approaches may be implemented, which are demonstrated experimentally through both scattering layers and multimode optical fibers; in the second situation where the speckle patterns are unknown (blind structured illumination), the so-called memory effect can be harnessed to produce calibration-free photoacoustic images, following the approach initially proposed for fluorescence imaging through thin scattering layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有散斑照明的单像素光声显微镜
具有结构照明和单像素检测的宽视场光学分辨率显微镜已经成为许多研究调查的主题。它比点扫描方法有很多优点,包括对稀疏样本、切片和超分辨率特征的更快采集速率。最初引入荧光成像,结构照明方法已经适应和发展了许多其他成像模式。在本文中,我们说明了如何散斑照明,作为一种特殊类型的结构化照明,可以利用单像素成像方法来执行光学分辨率光声显微镜。我们首先介绍了应用于光声成像的单像素检测原理,然后在两种不同的情况下说明了如何从散斑照明中计算重建光声图像:在第一种情况下,通过事先校准知道散斑图案,可以实现各种重建方法,这些方法通过散射层和多模光纤进行实验证明;在第二种情况下,散斑模式是未知的(盲结构照明),所谓的记忆效应可以利用产生不需要校准的光声图像,遵循最初提出的通过薄散射层进行荧光成像的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
4.70%
发文量
26
期刊最新文献
Six classes named entity recognition for mapping location of Indonesia natural disasters from twitter data Evaluation of predicted fault tolerance based on C5.0 decision tree algorithm in irrigation system of paddy fields Manifold embedded global and local discriminative features selection for single-shot multi-categories clothing recognition and retrieval Exploring the differentiated elderly service subsidies considering consumer word-of-mouth preferences TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1