A. Caravaca-Aguirre, F. Poisson, D. Bouchet, N. Stasio, P. Moreau, I. Wang, E. Zhang, P. Beard, C. Prada, C. Moser, D. Psaltis, O. Katz, E. Bossy
{"title":"Single-Pixel Photoacoustic Microscopy with Speckle Illumination","authors":"A. Caravaca-Aguirre, F. Poisson, D. Bouchet, N. Stasio, P. Moreau, I. Wang, E. Zhang, P. Beard, C. Prada, C. Moser, D. Psaltis, O. Katz, E. Bossy","doi":"10.34133/icomputing.0011","DOIUrl":null,"url":null,"abstract":"Wide-field optical-resolution microscopy with structured illumination and single-pixel detection has been the topic of a number of research investigations. Its advantages over point scanning approaches are many and include a faster acquisition rate for sparse samples, sectioning, and super-resolution features. Initially introduced for fluorescence imaging, structured illumination approaches have been adapted and developed for many other imaging modalities. In this paper, we illustrate how speckle illumination, as a particular type of structured illumination, can be exploited to perform optical-resolution photoacoustic microscopy with a single-pixel imaging approach. We first introduce the principle of single-pixel detection applied to photoacoustic imaging and then illustrate in 2 different situations how photoacoustic images may be computationally reconstructed from speckle illumination: In the first situation where the speckle patterns are known through a prior calibration, various reconstruction approaches may be implemented, which are demonstrated experimentally through both scattering layers and multimode optical fibers; in the second situation where the speckle patterns are unknown (blind structured illumination), the so-called memory effect can be harnessed to produce calibration-free photoacoustic images, following the approach initially proposed for fluorescence imaging through thin scattering layers.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"63 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/icomputing.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wide-field optical-resolution microscopy with structured illumination and single-pixel detection has been the topic of a number of research investigations. Its advantages over point scanning approaches are many and include a faster acquisition rate for sparse samples, sectioning, and super-resolution features. Initially introduced for fluorescence imaging, structured illumination approaches have been adapted and developed for many other imaging modalities. In this paper, we illustrate how speckle illumination, as a particular type of structured illumination, can be exploited to perform optical-resolution photoacoustic microscopy with a single-pixel imaging approach. We first introduce the principle of single-pixel detection applied to photoacoustic imaging and then illustrate in 2 different situations how photoacoustic images may be computationally reconstructed from speckle illumination: In the first situation where the speckle patterns are known through a prior calibration, various reconstruction approaches may be implemented, which are demonstrated experimentally through both scattering layers and multimode optical fibers; in the second situation where the speckle patterns are unknown (blind structured illumination), the so-called memory effect can be harnessed to produce calibration-free photoacoustic images, following the approach initially proposed for fluorescence imaging through thin scattering layers.