Designing Interactive Transfer Learning Tools for ML Non-Experts

Swati Mishra, Jeffrey M. Rzeszotarski
{"title":"Designing Interactive Transfer Learning Tools for ML Non-Experts","authors":"Swati Mishra, Jeffrey M. Rzeszotarski","doi":"10.1145/3411764.3445096","DOIUrl":null,"url":null,"abstract":"Interactive machine learning (iML) tools help to make ML accessible to users with limited ML expertise. However, gathering necessary training data and expertise for model-building remains challenging. Transfer learning, a process where learned representations from a model trained on potentially terabytes of data can be transferred to a new, related task, offers the possibility of providing ”building blocks” for non-expert users to quickly and effectively apply ML in their work. However, transfer learning largely remains an expert tool due to its high complexity. In this paper, we design a prototype to understand non-expert user behavior in an interactive environment that supports transfer learning. Our findings reveal a series of data- and perception-driven decision-making strategies non-expert users employ, to (in)effectively transfer elements using their domain expertise. Finally, we synthesize design implications which might inform future interactive transfer learning environments.","PeriodicalId":20451,"journal":{"name":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411764.3445096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Interactive machine learning (iML) tools help to make ML accessible to users with limited ML expertise. However, gathering necessary training data and expertise for model-building remains challenging. Transfer learning, a process where learned representations from a model trained on potentially terabytes of data can be transferred to a new, related task, offers the possibility of providing ”building blocks” for non-expert users to quickly and effectively apply ML in their work. However, transfer learning largely remains an expert tool due to its high complexity. In this paper, we design a prototype to understand non-expert user behavior in an interactive environment that supports transfer learning. Our findings reveal a series of data- and perception-driven decision-making strategies non-expert users employ, to (in)effectively transfer elements using their domain expertise. Finally, we synthesize design implications which might inform future interactive transfer learning environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为非机器学习专家设计交互式迁移学习工具
交互式机器学习(iML)工具帮助具有有限ML专业知识的用户访问ML。然而,为建立模型收集必要的训练数据和专门知识仍然具有挑战性。迁移学习是一个过程,在这个过程中,从一个训练了潜在tb级数据的模型中学习到的表示可以转移到一个新的、相关的任务中,它为非专业用户提供了“构建块”的可能性,可以快速有效地在他们的工作中应用ML。然而,由于迁移学习的高度复杂性,它在很大程度上仍然是一种专家工具。在本文中,我们设计了一个原型来理解支持迁移学习的交互式环境中的非专家用户行为。我们的研究结果揭示了非专家用户采用的一系列数据和感知驱动的决策策略,以有效地利用他们的领域专业知识转移元素。最后,我们综合了可能为未来交互式迁移学习环境提供信息的设计含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tea, Earl Grey, Hot: Designing Speech Interactions from the Imagined Ideal of Star Trek DistanciAR: Authoring Site-Specific Augmented Reality Experiences for Remote Environments StoryCoder: Teaching Computational Thinking Concepts Through Storytelling in a Voice-Guided App for Children Assisting Manipulation and Grasping in Robot Teleoperation with Augmented Reality Visual Cues Exploring Technology Design for Students with Vision Impairment in the Classroom and Remotely
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1