Application of ensemble Kalman filter in power system state tracking and sensitivity analysis

Yulan Li, Zhenyu Huang, N. Zhou, Barry Lee, R. Diao, P. Du
{"title":"Application of ensemble Kalman filter in power system state tracking and sensitivity analysis","authors":"Yulan Li, Zhenyu Huang, N. Zhou, Barry Lee, R. Diao, P. Du","doi":"10.1109/TDC.2012.6281499","DOIUrl":null,"url":null,"abstract":"An ensemble Kalman filter (EnKF) method is proposed to track dynamic states of generators. The algorithm of the EnKF and its application to generator state tracking are presented in detail. The accuracy and sensitivity of the method are analyzed with respect to initial state errors, measurement noise, unknown fault locations, time steps and parameter errors. It is demonstrated through simulation studies that even with some errors in the parameters, the developed EnKF method can still effectively track generator dynamic states.","PeriodicalId":19873,"journal":{"name":"PES T&D 2012","volume":"8 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PES T&D 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2012.6281499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

An ensemble Kalman filter (EnKF) method is proposed to track dynamic states of generators. The algorithm of the EnKF and its application to generator state tracking are presented in detail. The accuracy and sensitivity of the method are analyzed with respect to initial state errors, measurement noise, unknown fault locations, time steps and parameter errors. It is demonstrated through simulation studies that even with some errors in the parameters, the developed EnKF method can still effectively track generator dynamic states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成卡尔曼滤波在电力系统状态跟踪和灵敏度分析中的应用
提出了一种集成卡尔曼滤波(EnKF)方法来跟踪发电机的动态状态。详细介绍了EnKF算法及其在发电机状态跟踪中的应用。从初始状态误差、测量噪声、未知故障位置、时间步长和参数误差等方面分析了该方法的精度和灵敏度。仿真研究表明,即使在参数存在一定误差的情况下,所提出的EnKF方法仍能有效地跟踪发电机的动态状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage reduction field trials on distributions circuits Wind generators and series-compensated AC transmission lines Analysis of catastrophic events using statistical outlier methods An innovative approach to smart automation testing at National Grid A PSCAD/EMTDC model of a marine vehicle propulsion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1