Biomarkers Predicting Antidepressant Treatment Response

Bharathi S. Gadad, M. Jha, M. Trivedi
{"title":"Biomarkers Predicting Antidepressant Treatment Response","authors":"Bharathi S. Gadad, M. Jha, M. Trivedi","doi":"10.1093/med/9780190929565.003.0005","DOIUrl":null,"url":null,"abstract":"In clinical practice, patients do not always experience symptomatic remission or treatment response, even after trying various types of antidepressant medications. To improve outcomes and reduce attrition and nonadherence, there is a great need for personalized treatment of major depression. Hence, recent research efforts have focused on the identification of biological markers (or biomarkers) that can predict whether an individual patient will respond to the commonly used antidepressants. In this chapter, we review the biomarkers associated with antidepressant treatment response with particular attention to genetic, proteomic, metabolomic, transcriptomic, epigenetic biological, and biochemical markers. Although the “omics” approach holds great promise for the future, challenges and roadblocks for future research will need to be addressed.","PeriodicalId":11179,"journal":{"name":"Depression","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Depression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/med/9780190929565.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical practice, patients do not always experience symptomatic remission or treatment response, even after trying various types of antidepressant medications. To improve outcomes and reduce attrition and nonadherence, there is a great need for personalized treatment of major depression. Hence, recent research efforts have focused on the identification of biological markers (or biomarkers) that can predict whether an individual patient will respond to the commonly used antidepressants. In this chapter, we review the biomarkers associated with antidepressant treatment response with particular attention to genetic, proteomic, metabolomic, transcriptomic, epigenetic biological, and biochemical markers. Although the “omics” approach holds great promise for the future, challenges and roadblocks for future research will need to be addressed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测抗抑郁治疗反应的生物标志物
在临床实践中,患者并不总是经历症状缓解或治疗反应,即使在尝试各种类型的抗抑郁药物后。为了改善治疗效果,减少减员和不依从,有必要对重度抑郁症进行个性化治疗。因此,最近的研究工作集中在识别生物标记物(或生物标记物)上,这些标记物可以预测个体患者是否对常用的抗抑郁药有反应。在本章中,我们回顾了与抗抑郁治疗反应相关的生物标志物,特别关注遗传、蛋白质组学、代谢组学、转录组学、表观遗传生物学和生化标志物。尽管“组学”方法在未来有很大的前景,但未来研究的挑战和障碍需要解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depression Throughout the Life Course Charting a New Future for Depression What Can the Depressed Person do for Themself? Environmental and Psychological Contributions to Depression The Prevalence of Depression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1