Abhijit Cholkar, R. McCann, D. Kinahan, D. Brabazon
{"title":"Ultrafast Laser-Induced Surface Structuring of Anti-Fouling Steel Surfaces for Biomedical Applications","authors":"Abhijit Cholkar, R. McCann, D. Kinahan, D. Brabazon","doi":"10.1115/msec2022-85249","DOIUrl":null,"url":null,"abstract":"\n Metallic surfaces are increasingly used in medical applications due to their favorable material properties such as high strength and biocompatibility. In medical applications anti-fouling properties are an important requirement especially for implants and medical devices which come into contact with different types of fluid streams. These should be anti-fouling in order to prevent contamination and corrosion. Laser processing methods such as ultrafast laser processing is a one-step and scalable process for surface texturing. This process can be used to produce well-defined surface nano- and microscale superficial textures such as Laser-induced Periodic Surface Structures (LIPSS) which can enhance the anti-fouling capability of the surface.\n In this study, micro and nano scaled LIPSS structures are manufactured on a biocompatible grade stainless steel 316L substrate using an ultrafast (< 370 fs) and low power (< 4 W) laser system. With an aim to optimize the anti-fouling properties, laser process parameters such as pulse energy, pulse repetition rate and beam scanning speed were varied to produce microstructures on the stainless-steel surface of varying dimensions. Surface roughness was analyzed using a laser surface profilometer and changes in the hydrophobicity were examined using water contact angle goniometry.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"289 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Metallic surfaces are increasingly used in medical applications due to their favorable material properties such as high strength and biocompatibility. In medical applications anti-fouling properties are an important requirement especially for implants and medical devices which come into contact with different types of fluid streams. These should be anti-fouling in order to prevent contamination and corrosion. Laser processing methods such as ultrafast laser processing is a one-step and scalable process for surface texturing. This process can be used to produce well-defined surface nano- and microscale superficial textures such as Laser-induced Periodic Surface Structures (LIPSS) which can enhance the anti-fouling capability of the surface.
In this study, micro and nano scaled LIPSS structures are manufactured on a biocompatible grade stainless steel 316L substrate using an ultrafast (< 370 fs) and low power (< 4 W) laser system. With an aim to optimize the anti-fouling properties, laser process parameters such as pulse energy, pulse repetition rate and beam scanning speed were varied to produce microstructures on the stainless-steel surface of varying dimensions. Surface roughness was analyzed using a laser surface profilometer and changes in the hydrophobicity were examined using water contact angle goniometry.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.