Emergency risk management for landslide dam breaks in 2018 on the Yangtze River, China

Jian He , Limin Zhang , Te Xiao , Chen Chen
{"title":"Emergency risk management for landslide dam breaks in 2018 on the Yangtze River, China","authors":"Jian He ,&nbsp;Limin Zhang ,&nbsp;Te Xiao ,&nbsp;Chen Chen","doi":"10.1016/j.rcns.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In October and November of 2018, the upper reach of the Yangtze River was blocked twice by landslide dams. A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once it fails, imposing great risk to the downstream communities. Considering the chain of large dams and densely populated cities along the river, there is an urgent need to improve the system resilience of the Yangtze River to the landslide dam break hazard. This study presents a basin-scale emergency risk management framework based on an overtopping-erosion based dam failure model and a 1-D flood routing analysis model. Basin-wide inundation and detailed flood risk analyses are carried out considering engineering risk mitigation measures, which will facilitate the decision-making on future emergency risk mitigation plans. The proposed framework is applied to the landslide dam on the Yangtze River in November 2018. Results show that excavating a 15 m-depth diversion channel could effectively mitigate the flood risk of downstream areas. Further mitigation measures, including evacuation, removal of obstacles in the river, and preparation of certain intercept capacity in downstream reservoirs, are suggested based on the hazard chain risk analysis. The mitigation results in the case prove the effectiveness of the proposed framework. The incorporation of open-access global databases enables the application of the framework to any large river basin worldwide.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"1 3","pages":"Pages 1-11"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277274162200031X/pdfft?md5=da2d43e754a94c6c439f6804c31f1d38&pid=1-s2.0-S277274162200031X-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277274162200031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In October and November of 2018, the upper reach of the Yangtze River was blocked twice by landslide dams. A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once it fails, imposing great risk to the downstream communities. Considering the chain of large dams and densely populated cities along the river, there is an urgent need to improve the system resilience of the Yangtze River to the landslide dam break hazard. This study presents a basin-scale emergency risk management framework based on an overtopping-erosion based dam failure model and a 1-D flood routing analysis model. Basin-wide inundation and detailed flood risk analyses are carried out considering engineering risk mitigation measures, which will facilitate the decision-making on future emergency risk mitigation plans. The proposed framework is applied to the landslide dam on the Yangtze River in November 2018. Results show that excavating a 15 m-depth diversion channel could effectively mitigate the flood risk of downstream areas. Further mitigation measures, including evacuation, removal of obstacles in the river, and preparation of certain intercept capacity in downstream reservoirs, are suggested based on the hazard chain risk analysis. The mitigation results in the case prove the effectiveness of the proposed framework. The incorporation of open-access global databases enables the application of the framework to any large river basin worldwide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2018年长江滑坡溃坝应急风险管理
2018年10月和11月,长江上游两次被滑坡坝堵塞。在主要河流上的大型滑坡大坝,可能会蓄水大量,一旦发生故障,就会引发灾难性的洪水,给下游社区带来巨大的风险。考虑到长江沿岸的大型水坝链和人口密集的城市,迫切需要提高长江对滑坡溃坝灾害的系统恢复能力。本文提出了一种基于上覆侵蚀溃坝模型和一维洪水路径分析模型的流域应急风险管理框架。考虑工程风险缓解措施,开展全流域淹没和详细的洪水风险分析,有助于制定未来应急风险缓解计划。该框架已于2018年11月应用于长江滑坡大坝。结果表明,开挖深度为15 m的引水通道可以有效缓解下游地区的洪水风险。根据危害链风险分析,建议采取进一步的缓解措施,包括疏散、清除河流中的障碍物以及在下游水库中准备一定的拦截能力。该案例的缓解结果证明了所提议框架的有效性。开放获取的全球数据库的结合使该框架能够应用于全球任何大型流域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Automated knowledge graphs for complex systems (AutoGraCS): Applications to management of bridge networks Uncovering implicit Seismogenic associated regions towards promoting urban resilience Building Stock and Emission Models for Jakarta Key networks to create disaster resilient Smart Cities Mission: A case for remodeling India's Smart Cities Mission to include disaster resilience Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1