Daniel-Alexander Türk, R. Kussmaul, M. Zogg, C. Klahn, A. Spierings, H. Könen, P. Ermanni, M. Meboldt
{"title":"Additive Manufacturing with Composites for Integrated Aircraft Structures","authors":"Daniel-Alexander Türk, R. Kussmaul, M. Zogg, C. Klahn, A. Spierings, H. Könen, P. Ermanni, M. Meboldt","doi":"10.3929/ETHZ-A-010691526","DOIUrl":null,"url":null,"abstract":"The combination of additive manufacturing (AM) with advanced composites unlocks potentials in the design and development of highly integrated lightweight structures. This paper investigates two design potentials where the combination of AM and carbon fiber prepreg technology is applied to honeycomb sandwich structures: (i) Reduction of number of parts: The use of selective laser sintered cores allows the integration of various functions into one single part. These include structural as well as tooling, positioning and assembly functions. (ii) Tailored mechanical performance: With AM it is possible to adapt the mechanical properties of the core according to local load requirements. These potentials are demonstrated using the example of the development of an aircraft instrument panel. The approach of combining AM with advanced composites is evaluated by assessing the weight and the number of parts for the demonstrator panel compared to a state-of-the-art aluminum machined instrument panel. Weight savings of 40 % and parts reduction by 50 % indicate that the technology is competitive for complex low volume parts.","PeriodicalId":14908,"journal":{"name":"Journal of Advanced Materials","volume":"85 1","pages":"1404-1418"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-010691526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
The combination of additive manufacturing (AM) with advanced composites unlocks potentials in the design and development of highly integrated lightweight structures. This paper investigates two design potentials where the combination of AM and carbon fiber prepreg technology is applied to honeycomb sandwich structures: (i) Reduction of number of parts: The use of selective laser sintered cores allows the integration of various functions into one single part. These include structural as well as tooling, positioning and assembly functions. (ii) Tailored mechanical performance: With AM it is possible to adapt the mechanical properties of the core according to local load requirements. These potentials are demonstrated using the example of the development of an aircraft instrument panel. The approach of combining AM with advanced composites is evaluated by assessing the weight and the number of parts for the demonstrator panel compared to a state-of-the-art aluminum machined instrument panel. Weight savings of 40 % and parts reduction by 50 % indicate that the technology is competitive for complex low volume parts.