{"title":"Largely enhanced dielectric properties of TiO2-nanorods/poly(vinylidene fluoride) nanocomposites driven by enhanced interfacial areas","authors":"Pornsawan Kum-onsa, N. Chanlek, P. Thongbai","doi":"10.1080/20550324.2021.1952371","DOIUrl":null,"url":null,"abstract":"Abstract In this work, nanocomposites consisting of TiO2-nanorods (TiO2-NRs) with less than 100 nm in size and poly(vinylidene fluoride) (PVDF) were prepared using a liquid-phase assisted dispersion and hot-pressing methods. At 1 kHz and 25 °C, the high dielectric permittivity of ∼66 and loss tangent of ∼0.03 can be obtained in the nanocomposite with a filler volume fraction of 0.5, which was higher than that of a neat PVDF matrix by a factor of 6. Dielectric permittivity of TiO2-NRs/PVDF nanocomposites not only highly increased with TiO2-NRs, but also almost independent of the frequency range of 102–106 Hz. The significant enhancement in dielectric permittivity is mainly attributed to the interfacial polarization at the interfaces of TiO2-NRs and PVDF, and semiconducting properties of TiO2-NRs. Among the various models used for rationalizing the dielectric behavior, the experimental dielectric data is in close agreement with EMT (n = 0.11) and Yamada models (n = 8). Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"42 1","pages":"123 - 131"},"PeriodicalIF":4.2000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2021.1952371","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract In this work, nanocomposites consisting of TiO2-nanorods (TiO2-NRs) with less than 100 nm in size and poly(vinylidene fluoride) (PVDF) were prepared using a liquid-phase assisted dispersion and hot-pressing methods. At 1 kHz and 25 °C, the high dielectric permittivity of ∼66 and loss tangent of ∼0.03 can be obtained in the nanocomposite with a filler volume fraction of 0.5, which was higher than that of a neat PVDF matrix by a factor of 6. Dielectric permittivity of TiO2-NRs/PVDF nanocomposites not only highly increased with TiO2-NRs, but also almost independent of the frequency range of 102–106 Hz. The significant enhancement in dielectric permittivity is mainly attributed to the interfacial polarization at the interfaces of TiO2-NRs and PVDF, and semiconducting properties of TiO2-NRs. Among the various models used for rationalizing the dielectric behavior, the experimental dielectric data is in close agreement with EMT (n = 0.11) and Yamada models (n = 8). Graphical Abstract