{"title":"On the Global Behavior of a Geometric PDAV Controller by Means of a Geometrically Exact Linearization","authors":"Michalis Ramp, E. Papadopoulos","doi":"10.1115/1.4049552","DOIUrl":null,"url":null,"abstract":"\n A complex motion encountered in a number of robotic, industrial, and defense applications is the motion of a rigid body when one of its body-fixed axes tracks a desired pointing direction while it rotates at high angular velocity around the pointing direction (PDAV); during this motion, high frequency precession/nutation oscillations arise. This work analyzes the global/local closed-loop (CL) behavior induced by a developed geometric, PDAV controller and studies the high frequency precession/nutation oscillations that characterize PDAV motions. This is done via geometrically exact linearization and via simulation techniques that amount to charting the smooth CL vector fields on the manifold. A method to quickly estimate the frequency of the precession/nutation oscillations is developed and can be used for sizing actuators. A thorough understanding of the behavior of the CL flow induced by the PDAV controller is achieved, allowing the control engineer to anticipate/have a rough estimate of the system CL response.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049552","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
A complex motion encountered in a number of robotic, industrial, and defense applications is the motion of a rigid body when one of its body-fixed axes tracks a desired pointing direction while it rotates at high angular velocity around the pointing direction (PDAV); during this motion, high frequency precession/nutation oscillations arise. This work analyzes the global/local closed-loop (CL) behavior induced by a developed geometric, PDAV controller and studies the high frequency precession/nutation oscillations that characterize PDAV motions. This is done via geometrically exact linearization and via simulation techniques that amount to charting the smooth CL vector fields on the manifold. A method to quickly estimate the frequency of the precession/nutation oscillations is developed and can be used for sizing actuators. A thorough understanding of the behavior of the CL flow induced by the PDAV controller is achieved, allowing the control engineer to anticipate/have a rough estimate of the system CL response.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.