{"title":"SIRS Epidemic Modelling Using Fractional-ordered Differential Equations: Role of Fear effect","authors":"Shivam Mangal, O. P. Misra, J. Dhar","doi":"10.1142/s1793524523500444","DOIUrl":null,"url":null,"abstract":"In this paper, an SIRS epidemic model using Grunwald–Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases. The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number. The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter. Additionally, using the Grunwald–Letnikov approximation, the simulation is carried out to confirm the validity of analytic results graphically. Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021, we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one. Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases. [ FROM AUTHOR] Copyright of International Journal of Biomathematics is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"40 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523500444","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an SIRS epidemic model using Grunwald–Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases. The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number. The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter. Additionally, using the Grunwald–Letnikov approximation, the simulation is carried out to confirm the validity of analytic results graphically. Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021, we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one. Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases. [ FROM AUTHOR] Copyright of International Journal of Biomathematics is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
期刊介绍:
The goal of this journal is to present the latest achievements in biomathematics, facilitate international academic exchanges and promote the development of biomathematics. Its research fields include mathematical ecology, infectious disease dynamical system, biostatistics and bioinformatics.
Only original papers will be considered. Submission of a manuscript indicates a tacit understanding that the paper is not actively under consideration for publication with other journals. As submission and reviewing processes are handled electronically whenever possible, the journal promises rapid publication of articles.
The International Journal of Biomathematics is published bimonthly.