首页 > 最新文献

International Journal of Biomathematics最新文献

英文 中文
Supercritical Hopf bifurcations in the stage-structured model of housefly populations 家蝇种群阶段结构模型中的超临界霍普夫分岔
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-06 DOI: 10.1142/s1793524523501164
Xiangming Zhang, Mengmeng Hou, Hai-Feng Huo

Insect populations, which are diverse and widespread, provide a principal area of utilization of the stage-structured modeling approach. In this paper, housefly populations incorporating a stage-structured model are investigated theoretically and graphically. First, stability charts and rightmost characteristic roots of the positive equilibrium are elucidated analytically and numerically. Furthermore, the Hopf bifurcation at the positive equilibrium is derived employing geometric stability switch criterion. Second, the properties of Hopf bifurcation are determined using the center manifold theorem and by reducing the equation to the Poincaré normal form. Finally, the correctness of the theoretical derivation is confirmed using a numerical simulation based on specific parameter values. Our results show that with an increase in delay τ, the unique positive equilibrium may undergo two stability switches: from stable to unstable, and from unstable to stable. Interestingly, the characteristic equation has pure imaginary roots at the second pair and subsequent critical values. However, Hopf bifurcation theorem is not satisfied because all other characteristic roots of the characteristic equation at these critical values do not have strictly negative real parts, except the pure imaginary roots. We also simulate the unstable periodic solutions at the second pair of critical values through a bifurcation diagram. Therefore, a pair of supercritical Hopf bifurcations appear around the positive equilibrium of the housefly population stage-structured model.

昆虫种群种类繁多,分布广泛,是阶段结构建模方法的主要应用领域。本文对包含阶段结构模型的家蝇种群进行了理论和图形研究。首先,用分析和数值方法阐明了正平衡的稳定图和最右边的特征根。此外,还利用几何稳定性开关准则推导出了正平衡处的霍普夫分岔。其次,利用中心流形定理并通过将方程还原为波恩卡莱法线形式,确定了霍普夫分岔的性质。最后,基于特定参数值的数值模拟证实了理论推导的正确性。我们的结果表明,随着延迟 τ 的增加,唯一的正平衡可能会经历两次稳定性转换:从稳定到不稳定,以及从不稳定到稳定。有趣的是,特征方程在第二对临界值及其后的临界值处有纯虚根。然而,霍普夫分岔定理并不满足,因为除了纯虚根之外,特征方程在这些临界值处的所有其他特征根都没有严格的负实部。我们还通过分岔图模拟了第二对临界值处的不稳定周期解。因此,在家蝇种群阶段结构模型的正平衡点周围出现了一对超临界霍普夫分岔。
{"title":"Supercritical Hopf bifurcations in the stage-structured model of housefly populations","authors":"Xiangming Zhang, Mengmeng Hou, Hai-Feng Huo","doi":"10.1142/s1793524523501164","DOIUrl":"https://doi.org/10.1142/s1793524523501164","url":null,"abstract":"<p>Insect populations, which are diverse and widespread, provide a principal area of utilization of the stage-structured modeling approach. In this paper, housefly populations incorporating a stage-structured model are investigated theoretically and graphically. First, stability charts and rightmost characteristic roots of the positive equilibrium are elucidated analytically and numerically. Furthermore, the Hopf bifurcation at the positive equilibrium is derived employing geometric stability switch criterion. Second, the properties of Hopf bifurcation are determined using the center manifold theorem and by reducing the equation to the Poincaré normal form. Finally, the correctness of the theoretical derivation is confirmed using a numerical simulation based on specific parameter values. Our results show that with an increase in delay <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>, the unique positive equilibrium may undergo two stability switches: from stable to unstable, and from unstable to stable. Interestingly, the characteristic equation has pure imaginary roots at the second pair and subsequent critical values. However, Hopf bifurcation theorem is not satisfied because all other characteristic roots of the characteristic equation at these critical values do not have strictly negative real parts, except the pure imaginary roots. We also simulate the unstable periodic solutions at the second pair of critical values through a bifurcation diagram. Therefore, a pair of supercritical Hopf bifurcations appear around the positive equilibrium of the housefly population stage-structured model.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"53 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140566050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability analysis of a pine wood nematode prevention and control model with delay 带延迟的松材线虫防控模型稳定性分析
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-06 DOI: 10.1142/s1793524524500128
Jia Li, Yuting Ding

Pine wilt disease is a destructive forest disease with strong infectivity, a wide spread range and high difficulty in prevention and control. Since controlling Monochamus alternatus, the vector of pine wood nematode (Bursaphelenchus xylophilus) can reduce the occurrence of pine wilt disease efficiently, the parasitic natural enemy of M. alternatus, Dastarcus helophoroides, is introduced in this paper. Considering the influence of parasitic time of D. helophoroides on the control effect, based on the mutualistic symbiosis and parasitic relationship among pine wood nematode, M. alternatus and D. heloporoides, this paper establishes a pine wood nematode prevention and control model with delay. Then, the stability of positive equilibrium and the existence of Hopf bifurcation are discussed. Besides, we obtain the normal form of Hopf bifurcation by applying the multiple time scales method. Finally, numerical simulations with two sets of meaningful parameters selected by means of statistical analysis are carried out to support the theoretical findings. Through the comparative analysis of numerical simulations, the factors affecting the control effect of pine wilt disease are obtained, and some suggestions are put forward for practical control in the forest.

松材线虫病是一种破坏性森林病害,传染性强,传播范围广,防治难度大。由于控制松材线虫(Bursaphelenchus xylophilus)的传播媒介松材线虫(Monochamus alternatus)可以有效减少松材线虫病的发生,本文介绍了松材线虫的寄生天敌 Dastarcus helophoroides。考虑到D. helophoroides寄生时间对防治效果的影响,本文基于松材线虫、交替木线虫和D. helophoroides之间的互利共生和寄生关系,建立了松材线虫延迟防治模型。然后,讨论了正平衡的稳定性和霍普夫分岔的存在性。此外,我们还运用多时间尺度法得到了霍普夫分岔的正态形式。最后,通过统计分析选取两组有意义的参数进行了数值模拟,以支持理论结论。通过数值模拟的对比分析,得出了影响松材线虫病防治效果的因素,并为森林的实际防治提出了一些建议。
{"title":"Stability analysis of a pine wood nematode prevention and control model with delay","authors":"Jia Li, Yuting Ding","doi":"10.1142/s1793524524500128","DOIUrl":"https://doi.org/10.1142/s1793524524500128","url":null,"abstract":"<p>Pine wilt disease is a destructive forest disease with strong infectivity, a wide spread range and high difficulty in prevention and control. Since controlling <i>Monochamus alternatus</i>, the vector of pine wood nematode (<i>Bursaphelenchus xylophilus</i>) can reduce the occurrence of pine wilt disease efficiently, the parasitic natural enemy of <i>M. alternatus</i>, <i>Dastarcus helophoroides</i>, is introduced in this paper. Considering the influence of parasitic time of <i>D. helophoroides</i> on the control effect, based on the mutualistic symbiosis and parasitic relationship among pine wood nematode, <i>M. alternatus</i> and <i>D. heloporoides</i>, this paper establishes a pine wood nematode prevention and control model with delay. Then, the stability of positive equilibrium and the existence of Hopf bifurcation are discussed. Besides, we obtain the normal form of Hopf bifurcation by applying the multiple time scales method. Finally, numerical simulations with two sets of meaningful parameters selected by means of statistical analysis are carried out to support the theoretical findings. Through the comparative analysis of numerical simulations, the factors affecting the control effect of pine wilt disease are obtained, and some suggestions are put forward for practical control in the forest.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"94 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140566054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic analysis of an SSvEIQR model with nonlinear contact rate, isolation rate and vaccination rate dependent on media coverage 非线性接触率、隔离率和疫苗接种率取决于媒体报道的 SSvEIQR 模型的动态分析
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-03-15 DOI: 10.1142/s1793524524500116
Yantao Luo, Pengfei Liu, Tingting Zheng, Zhidong Teng

In this paper, we study an SSvEIQR model with nonlinear contact rate, isolation rate and vaccination rate driven by media coverage. First, the basic reproduction number R0 is derived. Then, the threshold dynamics of the disease are obtained in terms of R0: when R01, the global stability of the disease-free equilibrium is obtained by constructing an appropriate Lyapunov function; when R0>1, the sufficient conditions to prove the globally stability of endemic equilibrium are obtained by applying the geometric method into the four-dimensional system, which needs to estimate the Lozinskiǐ measure of a 6×6 matrix. Further, we conduct some numerical simulations to validate our theoretical results, and analyze the impact of media coverage on disease transmission, the results show that media coverage could effectively suppress the spread of the disease and reduce the number of infected individuals. Finally, through the sensitivity analysis of R0, we obtain some measures to control the spread of the disease, such as reducing contact, strengthening isolation and vaccination.

在本文中,我们研究了一个由媒体报道驱动的具有非线性接触率、隔离率和接种率的 SSvEIQR 模型。首先,得出基本繁殖数 R0。当 R0≤1 时,通过构造适当的 Lyapunov 函数,可以得到无病平衡的全局稳定性;当 R0>1 时,将几何方法应用于四维系统,需要估计 6×6 矩阵的 Lozinskiǐ 量,从而得到证明流行平衡全局稳定性的充分条件。此外,我们还进行了一些数值模拟来验证我们的理论结果,并分析了媒体报道对疾病传播的影响,结果表明媒体报道可以有效抑制疾病的传播,减少感染个体的数量。最后,通过对 R0 的敏感性分析,我们得出了一些控制疾病传播的措施,如减少接触、加强隔离和接种疫苗等。
{"title":"Dynamic analysis of an SSvEIQR model with nonlinear contact rate, isolation rate and vaccination rate dependent on media coverage","authors":"Yantao Luo, Pengfei Liu, Tingting Zheng, Zhidong Teng","doi":"10.1142/s1793524524500116","DOIUrl":"https://doi.org/10.1142/s1793524524500116","url":null,"abstract":"<p>In this paper, we study an SS<sub><i>v</i></sub>EIQR model with nonlinear contact rate, isolation rate and vaccination rate driven by media coverage. First, the basic reproduction number <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> is derived. Then, the threshold dynamics of the disease are obtained in terms of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>: when <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></math></span><span></span>, the global stability of the disease-free equilibrium is obtained by constructing an appropriate Lyapunov function; when <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, the sufficient conditions to prove the globally stability of endemic equilibrium are obtained by applying the geometric method into the four-dimensional system, which needs to estimate the Lozinski<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>ǐ</mi></math></span><span></span> measure of a <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>6</mn><mo stretchy=\"false\">×</mo><mn>6</mn></math></span><span></span> matrix. Further, we conduct some numerical simulations to validate our theoretical results, and analyze the impact of media coverage on disease transmission, the results show that media coverage could effectively suppress the spread of the disease and reduce the number of infected individuals. Finally, through the sensitivity analysis of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, we obtain some measures to control the spread of the disease, such as reducing contact, strengthening isolation and vaccination.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"121 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of disease dynamics using nonlinear fractional order SEIRS model with Crowley–Martin functional response and saturated treatment 利用非线性分数阶 SEIRS 模型与 Crowley-Martin 功能响应和饱和治疗对疾病动态进行综合分析
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-02-05 DOI: 10.1142/s1793524523501140
Bouissa Ayoub, Tsouli Najib

This paper presents a comprehensive study of disease spreading dynamics through the application of a nonlinear fractional order epidemic SEIRS model. By incorporating the Crowley–Martin type functional response and a saturated treatment function, the model effectively captures the intricacies of real-world epidemics. Our research establishes the existence, uniqueness, non-negativity and boundedness of the solution, while also investigating the model’s fundamental reproduction number. Additionally, we conduct a thorough analysis of the specific conditions governing the local and global stability of the model’s equilibriums. A notable observation is the variation of the reproduction number with the fractional-order α, which represents a memory effect on individuals’ dynamic behavior and reveals the influence of interactions between compartments. To validate these theoretical findings, we employ numerical simulations using Matlab, demonstrating that inhibition measures for susceptibles and the saturated treatment parameters play a pivotal role in determining the disease state. Specifically, we observe that as these parameter values increase, the transition from endemic equilibrium to disease-free equilibrium occurs.

本文通过应用非线性分数阶流行病 SEIRS 模型,对疾病传播动态进行了全面研究。通过结合 Crowley-Martin 型功能响应和饱和治疗功能,该模型有效地捕捉了现实世界中错综复杂的流行病。我们的研究确定了解的存在性、唯一性、非负性和有界性,同时还研究了模型的基本繁殖数。此外,我们还对模型平衡的局部和全局稳定性的具体条件进行了深入分析。一个值得注意的观察结果是繁殖数随分数阶 α 的变化,这代表了个体动态行为的记忆效应,并揭示了隔室之间相互作用的影响。为了验证这些理论发现,我们使用 Matlab 进行了数值模拟,证明易感者的抑制量和饱和处理参数在决定疾病状态方面起着关键作用。具体来说,我们观察到,随着这些参数值的增加,会出现从地方病平衡到无病平衡的转变。
{"title":"Comprehensive analysis of disease dynamics using nonlinear fractional order SEIRS model with Crowley–Martin functional response and saturated treatment","authors":"Bouissa Ayoub, Tsouli Najib","doi":"10.1142/s1793524523501140","DOIUrl":"https://doi.org/10.1142/s1793524523501140","url":null,"abstract":"<p>This paper presents a comprehensive study of disease spreading dynamics through the application of a nonlinear fractional order epidemic SEIRS model. By incorporating the Crowley–Martin type functional response and a saturated treatment function, the model effectively captures the intricacies of real-world epidemics. Our research establishes the existence, uniqueness, non-negativity and boundedness of the solution, while also investigating the model’s fundamental reproduction number. Additionally, we conduct a thorough analysis of the specific conditions governing the local and global stability of the model’s equilibriums. A notable observation is the variation of the reproduction number with the fractional-order <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>, which represents a memory effect on individuals’ dynamic behavior and reveals the influence of interactions between compartments. To validate these theoretical findings, we employ numerical simulations using Matlab, demonstrating that inhibition measures for susceptibles and the saturated treatment parameters play a pivotal role in determining the disease state. Specifically, we observe that as these parameter values increase, the transition from endemic equilibrium to disease-free equilibrium occurs.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"74 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation analysis and pattern formation of a delayed diffusive toxic-phytoplankton–zooplankton model 延迟扩散有毒浮游植物-浮游动物模型的分岔分析和模式形成
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-01-29 DOI: 10.1142/s1793524523501152
Ming Wu, Hongxing Yao

This study considers a model which incorporates delays, diffusion and toxicity in a phytoplankton–zooplankton system. Initially, we analyze the global existence, asymptotic behavior and persistence of the solution. We then analyze the equilibria’s local stability and investigate the non-delayed system’s bifurcation phenomena, including Turing and Hopf bifurcations and their combination. Subsequently, we explore the effects of delays on bifurcation and the global stability of the system using Lyapunov functional, focusing on Hopf and Turing–Hopf bifurcations. Finally, we present numerical simulations to validate the theoretical results and verify the emergence of various spatial patterns in the system.

本研究考虑了浮游植物-浮游动物系统中的延迟、扩散和毒性模型。首先,我们分析了解的全局存在性、渐近行为和持久性。然后,我们分析了平衡态的局部稳定性,并研究了非延迟系统的分岔现象,包括图灵分岔和霍普夫分岔及其组合。随后,我们利用 Lyapunov 函数探讨了延迟对分岔和系统全局稳定性的影响,重点是霍普夫分岔和图灵-霍普夫分岔。最后,我们通过数值模拟来验证理论结果,并验证系统中出现的各种空间模式。
{"title":"Bifurcation analysis and pattern formation of a delayed diffusive toxic-phytoplankton–zooplankton model","authors":"Ming Wu, Hongxing Yao","doi":"10.1142/s1793524523501152","DOIUrl":"https://doi.org/10.1142/s1793524523501152","url":null,"abstract":"<p>This study considers a model which incorporates delays, diffusion and toxicity in a phytoplankton–zooplankton system. Initially, we analyze the global existence, asymptotic behavior and persistence of the solution. We then analyze the equilibria’s local stability and investigate the non-delayed system’s bifurcation phenomena, including Turing and Hopf bifurcations and their combination. Subsequently, we explore the effects of delays on bifurcation and the global stability of the system using Lyapunov functional, focusing on Hopf and Turing–Hopf bifurcations. Finally, we present numerical simulations to validate the theoretical results and verify the emergence of various spatial patterns in the system.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"2020 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical behavior of a stochastic COVID-19 model with two Ornstein–Uhlenbeck processes and saturated incidence rates 具有两个 Ornstein-Uhlenbeck 过程和饱和发生率的 COVID-19 随机模型的动力学行为
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-01-24 DOI: 10.1142/s1793524523501085
Xiaoyu Li, Zhiming Li

According to the transmission characteristics of COVID-19, this paper proposes a stochastic SAIRS epidemic model with two mean reversion Ornstein–Uhlenbeck processes and saturated incidence rates. We first prove the existence and uniqueness of the global solution in the stochastic model. Using several suitable Lyapunov methods, we then derive the extinction and persistence of COVID-19 under certain conditions. Further, stationary distribution and ergodic properties are obtained. Moreover, we obtain the probability density function of the stochastic model around the equilibrium. Numerical simulations illustrate our theoretical results and the effect of essential parameters. Finally, we apply the model to investigate the latest outbreak of the COVID-19 epidemic in Guangzhou city, China.

根据 COVID-19 的传播特点,本文提出了一个具有两个均值回归 Ornstein-Uhlenbeck 过程和饱和发病率的随机 SAIRS 流行模型。我们首先证明了随机模型全局解的存在性和唯一性。然后,我们利用几种合适的 Lyapunov 方法,推导出 COVID-19 在特定条件下的消亡和持续性。此外,我们还获得了静态分布和遍历特性。此外,我们还得到了该随机模型在均衡点附近的概率密度函数。数值模拟说明了我们的理论结果和重要参数的影响。最后,我们应用该模型研究了最近在中国广州市爆发的 COVID-19 流行病。
{"title":"Dynamical behavior of a stochastic COVID-19 model with two Ornstein–Uhlenbeck processes and saturated incidence rates","authors":"Xiaoyu Li, Zhiming Li","doi":"10.1142/s1793524523501085","DOIUrl":"https://doi.org/10.1142/s1793524523501085","url":null,"abstract":"<p>According to the transmission characteristics of COVID-19, this paper proposes a stochastic SAIRS epidemic model with two mean reversion Ornstein–Uhlenbeck processes and saturated incidence rates. We first prove the existence and uniqueness of the global solution in the stochastic model. Using several suitable Lyapunov methods, we then derive the extinction and persistence of COVID-19 under certain conditions. Further, stationary distribution and ergodic properties are obtained. Moreover, we obtain the probability density function of the stochastic model around the equilibrium. Numerical simulations illustrate our theoretical results and the effect of essential parameters. Finally, we apply the model to investigate the latest outbreak of the COVID-19 epidemic in Guangzhou city, China.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"6 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of vaccination and underreporting on COVID-19 infections in Turkey based on effective reproduction number 根据有效繁殖数量评估土耳其 COVID-19 感染的疫苗接种和漏报情况
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-01-12 DOI: 10.1142/s1793524523501024
Tuğba Akman, Emek Köse, Necibe Tuncer

In this paper, we introduce a SEIR-type COVID-19 model where the infected class is further divided into subclasses with individuals in intensive care (ICUs) and ventilation units. The model is calibrated with the symptomatic COVID-19 cases, deaths, and the number of patients in ICUs and ventilation units as reported by Republic of Turkey, Ministry of Health for the period 11 March 2020 through 30 May 2020 when the nationwide lockdown is in order. COVID-19 interventions in Turkey are incorporated into the model to detect the future trend of the outbreak accurately. We tested the effect of underreporting and we found that the peaks of the disease differ significantly depending on the rate of underreporting, however, the timing of the peaks remains constant. The lockdown is lifted on 1 June, and the model is modified to include a time-dependent transmission rate which is linked to the effective reproduction number t through basic reproduction number 0. The modified model captures the changing dynamics and peaks of the outbreak successfully. With the onset of vaccination on 13 January 2021, we augment the model with the vaccination class to investigate the impact of vaccination rate and efficacy. We observe that vaccination rate is a more critical parameter than the vaccine efficacy to eliminate the disease successfully.

在本文中,我们引入了一个 SEIR 型 COVID-19 模型,该模型将感染类与重症监护室(ICU)和通风室中的患者进一步划分为多个子类。该模型根据土耳其共和国卫生部报告的 2020 年 3 月 11 日至 2020 年 5 月 30 日全国范围封锁期间的 COVID-19 无症状病例、死亡病例以及重症监护室和通风室患者人数进行校准。土耳其的 COVID-19 干预措施被纳入模型,以准确检测疫情的未来趋势。我们测试了漏报的影响,发现疫情峰值因漏报率的不同而有显著差异,但峰值出现的时间保持不变。6 月 1 日解除封锁后,我们对模型进行了修改,加入了随时间变化的传播率,该传播率通过基本繁殖数ℛ0 与有效繁殖数ℛt 相关联。修改后的模型成功捕捉到了疫情的动态变化和峰值。随着 2021 年 1 月 13 日疫苗接种的开始,我们在模型中增加了疫苗接种类别,以研究疫苗接种率和效力的影响。我们发现,接种率是成功消除疾病的一个比疫苗效力更关键的参数。
{"title":"Assessment of vaccination and underreporting on COVID-19 infections in Turkey based on effective reproduction number","authors":"Tuğba Akman, Emek Köse, Necibe Tuncer","doi":"10.1142/s1793524523501024","DOIUrl":"https://doi.org/10.1142/s1793524523501024","url":null,"abstract":"<p>In this paper, we introduce a SEIR-type COVID-19 model where the infected class is further divided into subclasses with individuals in intensive care (ICUs) and ventilation units. The model is calibrated with the symptomatic COVID-19 cases, deaths, and the number of patients in ICUs and ventilation units as reported by Republic of Turkey, Ministry of Health for the period 11 March 2020 through 30 May 2020 when the nationwide lockdown is in order. COVID-19 interventions in Turkey are incorporated into the model to detect the future trend of the outbreak accurately. We tested the effect of underreporting and we found that the peaks of the disease differ significantly depending on the rate of underreporting, however, the timing of the peaks remains constant. The lockdown is lifted on 1 June, and the model is modified to include a time-dependent transmission rate which is linked to the effective reproduction number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> through basic reproduction number <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. The modified model captures the changing dynamics and peaks of the outbreak successfully. With the onset of vaccination on 13 January 2021, we augment the model with the vaccination class to investigate the impact of vaccination rate and efficacy. We observe that vaccination rate is a more critical parameter than the vaccine efficacy to eliminate the disease successfully.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"64 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global analysis of a network-based SIR epidemic model with a saturated treatment function 对具有饱和治疗功能的基于网络的 SIR 流行病模型进行全局分析
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-01-04 DOI: 10.1142/s1793524523501127
Xiaodan Wei

In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter α is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter α affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value R0<1, there exist two values of α: αc and α0, such that the disease-free equilibrium is globally asymptotically stable when ααc and multiple endemic equilibria exist when αα0. This means that the parameter α has an essential influence on the spreading of the disease. (2) In the case of the threshold value R0>1, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if ααc, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.

本文研究了一个基于网络的 SIR 流行病模型,该模型具有饱和治疗功能,其中引入了一个参数 α 来衡量感染者延迟治疗的影响程度。我们的目的是进行全局分析,研究参数 α 如何影响疾病的传播。我们的主要结果如下(1) 在临界值 R0<1 的情况下,存在两个 α 值:αc 和 α0,当 α≤αc 时,无疾病均衡是全局渐近稳定的,而当α≥α0 时,存在多个流行均衡。这说明参数 α 对疾病的传播有着至关重要的影响。(2)在阈值 R0>1 的情况下,如果模型只有一个地方病均衡,那么唯一的地方病均衡具有全局吸引力。在这种情况下,还证明了如果α≤αc,则地方病均衡只有一个,因此是全局有吸引力的。此外,我们还进行了数值模拟,以说明我们的理论结果。
{"title":"Global analysis of a network-based SIR epidemic model with a saturated treatment function","authors":"Xiaodan Wei","doi":"10.1142/s1793524523501127","DOIUrl":"https://doi.org/10.1142/s1793524523501127","url":null,"abstract":"<p>In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span><span></span>, there exist two values of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>: <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, such that the disease-free equilibrium is globally asymptotically stable when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and multiple endemic equilibria exist when <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. This means that the parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> has an essential influence on the spreading of the disease. (2) In the case of the threshold value <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span>, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"26 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threshold dynamics of a nonlocal dispersal SIS epidemic model with free boundaries 具有自由边界的非局部扩散 SIS 流行病模型的阈值动力学
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-12-23 DOI: 10.1142/s179352452350095x
Yachun Tong, Inkyung Ahn, Zhigui Lin

To study the influence of the moving front of the infected interval and the spatial movement of individuals on the spreading or vanishing of infectious disease, we consider a nonlocal susceptible–infected–susceptible (SIS) reaction–diffusion model with media coverage, hospital bed numbers and free boundaries. The principal eigenvalue of the integral operator is defined, and the impacts of the diffusion rate of infected individuals and interval length on the principal eigenvalue are analyzed. Furthermore, sufficient conditions for spreading and vanishing of the disease are derived. Our results show that large media coverage and hospital bed numbers are beneficial to the prevention and control of disease. The difference between the model with nonlocal diffusion and that with local diffusion is also discussed and nonlocal diffusion leads to more possibilities.

为了研究感染区间的移动前沿和个体的空间移动对传染病传播或消失的影响,我们考虑了一个具有媒体覆盖、医院床位数和自由边界的非局部易感-感染-易感(SIS)反应-扩散模型。定义了积分算子的主特征值,并分析了受感染个体的扩散率和区间长度对主特征值的影响。此外,还推导出了疾病扩散和消失的充分条件。我们的结果表明,大量的媒体报道和医院床位数有利于疾病的预防和控制。我们还讨论了非局部扩散模型与局部扩散模型的区别,非局部扩散带来了更多的可能性。
{"title":"Threshold dynamics of a nonlocal dispersal SIS epidemic model with free boundaries","authors":"Yachun Tong, Inkyung Ahn, Zhigui Lin","doi":"10.1142/s179352452350095x","DOIUrl":"https://doi.org/10.1142/s179352452350095x","url":null,"abstract":"<p>To study the influence of the moving front of the infected interval and the spatial movement of individuals on the spreading or vanishing of infectious disease, we consider a nonlocal susceptible–infected–susceptible (SIS) reaction–diffusion model with media coverage, hospital bed numbers and free boundaries. The principal eigenvalue of the integral operator is defined, and the impacts of the diffusion rate of infected individuals and interval length on the principal eigenvalue are analyzed. Furthermore, sufficient conditions for spreading and vanishing of the disease are derived. Our results show that large media coverage and hospital bed numbers are beneficial to the prevention and control of disease. The difference between the model with nonlocal diffusion and that with local diffusion is also discussed and nonlocal diffusion leads to more possibilities.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"6 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threshold dynamics of a reaction-advection-diffusion waterborne disease model with seasonality and human behavior change 具有季节性和人类行为变化的反应-平流-扩散水传播疾病模型的阈值动力学
IF 2.2 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-12-15 DOI: 10.1142/s1793524523501061
Wei Wang, Xiaotong Wang, Xiaoting Fan
{"title":"Threshold dynamics of a reaction-advection-diffusion waterborne disease model with seasonality and human behavior change","authors":"Wei Wang, Xiaotong Wang, Xiaoting Fan","doi":"10.1142/s1793524523501061","DOIUrl":"https://doi.org/10.1142/s1793524523501061","url":null,"abstract":"","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"887 ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139178239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Biomathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1