MDP modeling of resource provisioning in virtualized content-delivery networks

A. Haghighi, S. Shah-Heydari, S. Shahbazpanahi
{"title":"MDP modeling of resource provisioning in virtualized content-delivery networks","authors":"A. Haghighi, S. Shah-Heydari, S. Shahbazpanahi","doi":"10.1109/ICNP.2017.8117600","DOIUrl":null,"url":null,"abstract":"In this paper a Markov decision process (MDP) model for virtualized content delivery networks is proposed. We use stochastic optimization to assign cloud site resources to each user group. We propose how quality of experience (QoE) can be included in the modeling and optimization. We then present an optimal solution for a constraint-free version of the problem, and show the improvement in accumulated revenue when our optimization model is used. A sub-optimal algorithm is proposed that would reduce the complexity of the problem. Simulation results are presented to support merits of the proposed algorithm.","PeriodicalId":6462,"journal":{"name":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","volume":"181 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2017.8117600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a Markov decision process (MDP) model for virtualized content delivery networks is proposed. We use stochastic optimization to assign cloud site resources to each user group. We propose how quality of experience (QoE) can be included in the modeling and optimization. We then present an optimal solution for a constraint-free version of the problem, and show the improvement in accumulated revenue when our optimization model is used. A sub-optimal algorithm is proposed that would reduce the complexity of the problem. Simulation results are presented to support merits of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟化内容交付网络中资源供应的MDP建模
本文提出了一种虚拟内容交付网络的马尔可夫决策过程模型。我们使用随机优化方法将云站点资源分配给每个用户组。我们提出了如何将体验质量(QoE)纳入建模和优化。然后,我们提出了该问题的无约束版本的最优解决方案,并展示了使用我们的优化模型时累积收益的改进。提出了一种降低问题复杂度的次优算法。仿真结果支持了该算法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-tier Collaborative Deep Reinforcement Learning for Non-terrestrial Network Empowered Vehicular Connections Message from the General Co-Chairs Algorithm-data driven optimization of adaptive communication networks Planning in compute-aggregate problems as optimization problems on graphs General ternary bit strings on commodity longest-prefix-match infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1