Richard Dodson , María J. Rioja , Taehyun Jung , José L. Goméz , Valentin Bujarrabal , Luca Moscadelli , James C.A. Miller-Jones , Alexandra J. Tetarenko , Gregory R. Sivakoff
{"title":"The science case for simultaneous mm-wavelength receivers in radio astronomy","authors":"Richard Dodson , María J. Rioja , Taehyun Jung , José L. Goméz , Valentin Bujarrabal , Luca Moscadelli , James C.A. Miller-Jones , Alexandra J. Tetarenko , Gregory R. Sivakoff","doi":"10.1016/j.newar.2017.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers.</p><p><span><span>Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, </span>astrometry, observations of </span>AGN<span><span><span> cores in spectral index and Faraday rotation), </span>spectral line VLBI (observations of </span>evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries.</span></p><p>Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"79 ","pages":"Pages 85-102"},"PeriodicalIF":11.7000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2017.09.003","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy Reviews","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387647317300209","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 9
Abstract
This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers.
Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, astrometry, observations of AGN cores in spectral index and Faraday rotation), spectral line VLBI (observations of evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries.
Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.
期刊介绍:
New Astronomy Reviews publishes review articles in all fields of astronomy and astrophysics: theoretical, observational and instrumental. This international review journal is written for a broad audience of professional astronomers and astrophysicists.
The journal covers solar physics, planetary systems, stellar, galactic and extra-galactic astronomy and astrophysics, as well as cosmology. New Astronomy Reviews is also open for proposals covering interdisciplinary and emerging topics such as astrobiology, astroparticle physics, and astrochemistry.