Design and fabrication of micro hot-wire flow sensor using 0.35μm CMOS MEMS technology

Z. Miao, C. Chao, Y. Chiu, Chia-Wei Lin, Yi-Kuen Lee
{"title":"Design and fabrication of micro hot-wire flow sensor using 0.35μm CMOS MEMS technology","authors":"Z. Miao, C. Chao, Y. Chiu, Chia-Wei Lin, Yi-Kuen Lee","doi":"10.1109/NEMS.2014.6908810","DOIUrl":null,"url":null,"abstract":"MEMS sensors are promising for Energy Efficient Building (EeB) because of the potential low cost and low power consumption. Various flow sensors based on MEMS technology have been fabricated. In this work, we designed and fabricated a polysilicon micro hot-wire flow sensor using a commercial 0.35μm 2P4M CMOS technology followed by post-CMOS processing. A post-CMOS MEMS process for a 1.5mm×1.5mm sensor chip using Deep Reactive Ion Etch (DRIE) and spray coating was utilized to finish the fabrication. The fabricated flow sensor was characterized at different flow rates. The fabricated sensor with a dimension of 300μm×2μm×3.76μm demonstrated a sensitivity of 23.87 mV/(m/s) and power consumption of 0.79 mW at Uin =5m/s. The experiment results were consistent with the theoretical prediction and the best results showed an average error of only 5%.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"52 1","pages":"289-293"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

MEMS sensors are promising for Energy Efficient Building (EeB) because of the potential low cost and low power consumption. Various flow sensors based on MEMS technology have been fabricated. In this work, we designed and fabricated a polysilicon micro hot-wire flow sensor using a commercial 0.35μm 2P4M CMOS technology followed by post-CMOS processing. A post-CMOS MEMS process for a 1.5mm×1.5mm sensor chip using Deep Reactive Ion Etch (DRIE) and spray coating was utilized to finish the fabrication. The fabricated flow sensor was characterized at different flow rates. The fabricated sensor with a dimension of 300μm×2μm×3.76μm demonstrated a sensitivity of 23.87 mV/(m/s) and power consumption of 0.79 mW at Uin =5m/s. The experiment results were consistent with the theoretical prediction and the best results showed an average error of only 5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于0.35μm CMOS MEMS技术的微型热线流量传感器的设计与制造
MEMS传感器因其潜在的低成本和低功耗而在节能建筑(EeB)中具有广阔的应用前景。各种基于MEMS技术的流量传感器已经被制造出来。本研究采用商用0.35μm 2P4M CMOS工艺设计并制作了多晶硅微热线流量传感器,并进行了后处理。采用后cmos MEMS工艺,采用深度反应离子蚀刻(Deep Reactive Ion Etch, DRIE)和喷涂工艺完成了1.5mm×1.5mm传感器芯片的制备。对所制备的流量传感器在不同流量下进行了表征。该传感器尺寸为300μm×2μm×3.76μm,在Uin =5m/s时灵敏度为23.87 mV/(m/s),功耗为0.79 mW。实验结果与理论预测一致,最佳结果平均误差仅为5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large scale and high yield assembly of SWNTs by sacrificial electrode method Localized two-step galvanic replacement of a tip apex modification for field sensitive scanning probe microscopy Development of a novel bidirectional electrothermal actuator and its application to RF MEMS switch Nanorobotic end-effectors: Design, fabrication, and in situ characterization Quantum cloakings hide electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1