S. Baloch, J. Leon, S. Masalmeh, D. Chappell, J. Brodie, C. Romero, S. Al Mazrouei, A. Al Tenaiji, M. Al Balooshi, Arit Igogo, M. Azam, Y.K Maheshwar, G. Dupuis
{"title":"Expanding Polymer Injectivity Tests on a Second Giant Carbonate UAE Oil Reservoir at High Salinity & High Temperature Conditions.","authors":"S. Baloch, J. Leon, S. Masalmeh, D. Chappell, J. Brodie, C. Romero, S. Al Mazrouei, A. Al Tenaiji, M. Al Balooshi, Arit Igogo, M. Azam, Y.K Maheshwar, G. Dupuis","doi":"10.2118/207498-ms","DOIUrl":null,"url":null,"abstract":"\n Over the last few years, ADNOC has systematically investigated a new polymer-based EOR scheme to improve sweep efficiency in high temperature and high salinity (HTHS) carbonate reservoirs in Abu Dhabi (Masalmeh et al., 2014). Consequently, ADNOC has developed a thorough de-risking program for the new EOR concept in these carbonate reservoirs. The de-risking program includes extensive laboratory experimental studies and field injectivity tests to ensure that the selected polymer can be propagated in the target reservoirs.\n A new polymer with high 2-acrylamido-tertiary-butyl sulfonic acid (ATBS) content was identified, based on extensive laboratory studies (Masalmeh, et al., 2019, Dupuis, et al., 2017, Jouenne 2020), and an initial polymer injectivity test (PIT) was conducted in 2019 at 250°F and salinity >200,000 ppm, with low H2S content (Rachapudi, et al., 2020, Leon and Masalmeh, 2021). The next step for ADNOC was to extend polymer application to harsher field conditions, including higher H2S content. Accordingly, a PIT was designed in preparation for a multi-well pilot\n This paper presents ADNOC's follow-up PIT, which expands the envelope of polymer flooding to dissolve H2S concentrations of 20 - 40 ppm to confirm injectivity at representative field conditions and in situ polymer performance. The PIT was executed over five months, from February 2021 to July 2021, followed by a chase water flood that will run until December 2021. A total of 108,392 barrels of polymer solution were successfully injected during the PIT. The extensive dataset acquired was used to assess injectivity and in-depth mobility reduction associated with the new polymer.\n Preliminary results from the PIT suggest that all key performance indicators have been achieved, with a predictable viscosity yield and good injectivity at target rates, consistent with the laboratory data. The use of a down-hole shut-in tool (DHSIT) to acquire pressure fall-off (PFO) data clarified the near-wellbore behaviour of the polymer and allowed optimisation of the PIT programme.\n This paper assesses the importance of water quality on polymer solution preparation and injection performance and reviews operational data acquired during the testing period.\n Polymer properties determined during the PIT will be used to optimise field and sector models and will facilitate the evaluation of polymer EOR in other giant, heterogeneous carbonate reservoirs, leading to improved recovery in ADNOC and Middle East reservoirs.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"399 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207498-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Over the last few years, ADNOC has systematically investigated a new polymer-based EOR scheme to improve sweep efficiency in high temperature and high salinity (HTHS) carbonate reservoirs in Abu Dhabi (Masalmeh et al., 2014). Consequently, ADNOC has developed a thorough de-risking program for the new EOR concept in these carbonate reservoirs. The de-risking program includes extensive laboratory experimental studies and field injectivity tests to ensure that the selected polymer can be propagated in the target reservoirs.
A new polymer with high 2-acrylamido-tertiary-butyl sulfonic acid (ATBS) content was identified, based on extensive laboratory studies (Masalmeh, et al., 2019, Dupuis, et al., 2017, Jouenne 2020), and an initial polymer injectivity test (PIT) was conducted in 2019 at 250°F and salinity >200,000 ppm, with low H2S content (Rachapudi, et al., 2020, Leon and Masalmeh, 2021). The next step for ADNOC was to extend polymer application to harsher field conditions, including higher H2S content. Accordingly, a PIT was designed in preparation for a multi-well pilot
This paper presents ADNOC's follow-up PIT, which expands the envelope of polymer flooding to dissolve H2S concentrations of 20 - 40 ppm to confirm injectivity at representative field conditions and in situ polymer performance. The PIT was executed over five months, from February 2021 to July 2021, followed by a chase water flood that will run until December 2021. A total of 108,392 barrels of polymer solution were successfully injected during the PIT. The extensive dataset acquired was used to assess injectivity and in-depth mobility reduction associated with the new polymer.
Preliminary results from the PIT suggest that all key performance indicators have been achieved, with a predictable viscosity yield and good injectivity at target rates, consistent with the laboratory data. The use of a down-hole shut-in tool (DHSIT) to acquire pressure fall-off (PFO) data clarified the near-wellbore behaviour of the polymer and allowed optimisation of the PIT programme.
This paper assesses the importance of water quality on polymer solution preparation and injection performance and reviews operational data acquired during the testing period.
Polymer properties determined during the PIT will be used to optimise field and sector models and will facilitate the evaluation of polymer EOR in other giant, heterogeneous carbonate reservoirs, leading to improved recovery in ADNOC and Middle East reservoirs.