Learning using privileged information: similarity control and knowledge transfer

V. Vapnik, R. Izmailov
{"title":"Learning using privileged information: similarity control and knowledge transfer","authors":"V. Vapnik, R. Izmailov","doi":"10.5555/2789272.2886814","DOIUrl":null,"url":null,"abstract":"This paper describes a new paradigm of machine learning, in which Intelligent Teacher is involved. During training stage, Intelligent Teacher provides Student with information that contains, along with classification of each example, additional privileged information (for example, explanation) of this example. The paper describes two mechanisms that can be used for significantly accelerating the speed of Student's learning using privileged information: (1) correction of Student's concepts of similarity between examples, and (2) direct Teacher-Student knowledge transfer.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"7 1","pages":"2023-2049"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"344","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2886814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 344

Abstract

This paper describes a new paradigm of machine learning, in which Intelligent Teacher is involved. During training stage, Intelligent Teacher provides Student with information that contains, along with classification of each example, additional privileged information (for example, explanation) of this example. The paper describes two mechanisms that can be used for significantly accelerating the speed of Student's learning using privileged information: (1) correction of Student's concepts of similarity between examples, and (2) direct Teacher-Student knowledge transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用特权信息学习:相似性控制和知识转移
本文描述了一种新的机器学习范式,其中涉及智能教师。在训练阶段,智能教师向学生提供信息,这些信息包含每个示例的分类,以及该示例的附加特权信息(例如,解释)。本文描述了两种可用于利用特权信息显著加快学生学习速度的机制:(1)纠正学生对示例之间相似性的概念,以及(2)直接师生知识转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1