D. Comboni, T. Porȩba, F. Pagliaro, Tommaso Battiston, P. Lotti, G. Gatta, G. Garbarino, M. Hanfland
{"title":"Crystal structure of the high-P polymorph of Ca2B6O6(OH)10·2(H2O) (meyerhofferite)","authors":"D. Comboni, T. Porȩba, F. Pagliaro, Tommaso Battiston, P. Lotti, G. Gatta, G. Garbarino, M. Hanfland","doi":"10.1107/s2052520621009768","DOIUrl":null,"url":null,"abstract":"The crystal structure of the high-pressure polymorph of meyerhofferite, ideally Ca2B6O6(OH)10·2(H2O), has been determined by means of single-crystal synchrotron X-ray diffraction data. Meyerhofferite undergoes a first-order isosymmetric phase transition to meyerhofferite-II, bracketed between 3.15 and 3.75 GPa, with a large volume discontinuity. The phase transition is marked by an increase in the coordination number of the boron B1 site, from III to IV, leading to a more interconnected and less compressible structure. The main structural differences between the two polymorphs and the P-induced deformation mechanisms at the atomic scale are discussed.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/s2052520621009768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The crystal structure of the high-pressure polymorph of meyerhofferite, ideally Ca2B6O6(OH)10·2(H2O), has been determined by means of single-crystal synchrotron X-ray diffraction data. Meyerhofferite undergoes a first-order isosymmetric phase transition to meyerhofferite-II, bracketed between 3.15 and 3.75 GPa, with a large volume discontinuity. The phase transition is marked by an increase in the coordination number of the boron B1 site, from III to IV, leading to a more interconnected and less compressible structure. The main structural differences between the two polymorphs and the P-induced deformation mechanisms at the atomic scale are discussed.