Toeplitz Structured Covariance Matrix Estimation for Radar Applications

Xiaolin Du, A. Aubry, A. Maio, G. Cui
{"title":"Toeplitz Structured Covariance Matrix Estimation for Radar Applications","authors":"Xiaolin Du, A. Aubry, A. Maio, G. Cui","doi":"10.1109/SAM48682.2020.9104273","DOIUrl":null,"url":null,"abstract":"Following a geometric paradigm, the estimation of a Toeplitz structured covariance matrix is considered. The estimator minimizes the distance from the Sample Covariance Matrix (SCM) while complying with some specific constraints modeling the covariance structure. The resulting constrained optimization problem is solved globally resorting to the Dykstra’ projection framework. Each step of the procedure involves the solution of two convex sub-problems, whose minimizers are available in closed form. Simulation results related to typical radar environments highlight the effectiveness of the devised method.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"31 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Following a geometric paradigm, the estimation of a Toeplitz structured covariance matrix is considered. The estimator minimizes the distance from the Sample Covariance Matrix (SCM) while complying with some specific constraints modeling the covariance structure. The resulting constrained optimization problem is solved globally resorting to the Dykstra’ projection framework. Each step of the procedure involves the solution of two convex sub-problems, whose minimizers are available in closed form. Simulation results related to typical radar environments highlight the effectiveness of the devised method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构协方差矩阵估计在雷达中的应用
遵循几何范式,考虑了Toeplitz结构协方差矩阵的估计。该估计器在遵守协方差结构建模的一些特定约束的同时,最小化了与样本协方差矩阵(SCM)的距离。利用Dykstra投影框架对约束优化问题进行全局求解。该过程的每一步都涉及两个凸子问题的解,它们的极小值以封闭形式存在。典型雷达环境的仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1