Neural Network Stealing via Meltdown

Hoyong Jeong, Dohyun Ryu, Junbeom Hur
{"title":"Neural Network Stealing via Meltdown","authors":"Hoyong Jeong, Dohyun Ryu, Junbeom Hur","doi":"10.1109/ICOIN50884.2021.9333926","DOIUrl":null,"url":null,"abstract":"Deep learning services are now deployed in various fields on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multitenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep learning service with 92.875% accuracy and 1.325kB/s extraction speed.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"114 1","pages":"36-38"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning services are now deployed in various fields on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multitenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep learning service with 92.875% accuracy and 1.325kB/s extraction speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过Meltdown窃取神经网络
深度学习服务现在部署在云基础设施之上的各个领域。在这样的云环境中,虚拟化技术为每个租户提供了逻辑上独立、隔离的计算空间。然而,最近的研究表明,通过利用云系统中虚拟化技术和共享处理器架构的漏洞,可以在云租户之间建立各种侧通道。在本文中,我们提出了一种新的攻击场景,可以通过利用多租户系统环境中的Meltdown漏洞窃取深度学习模型的内部信息。在实验基础上,提出的攻击方法能够以92.875%的准确率和1.325kB/s的提取速度提取TensorFlow深度学习服务的内部信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1