Jinwon Jeong, S. Chung, Jeong‐Bong Lee, Daeyoung Kim
{"title":"Electro-Hydrodynamic Droplet Generation, Manipulation, and Repulsion of Oxidized Gallium-Based Liquid Metal","authors":"Jinwon Jeong, S. Chung, Jeong‐Bong Lee, Daeyoung Kim","doi":"10.1109/TRANSDUCERS.2019.8808257","DOIUrl":null,"url":null,"abstract":"This paper presents the electric field-based on-demand size controllable droplet generation, falling direction manipulation, and repulsion. We controlled the size of the generated gallium-based liquid metal droplets by adjusting the amplitude of the applied electric field. The volume and the number of the generated liquid metal droplet depending on flow rate and applied voltage were measured. We also studied time-dependent falling velocity of the generated liquid metal droplet according to various applied voltages. In addition, by changing the electric field which was achieved by controlling the position of the circular-shaped electrode, the falling direction of liquid metal droplet can be manipulated. Finally, the electro-hydrodynamic repulsion of the liquid metal was demonstrated.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"362 1","pages":"2337-2339"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the electric field-based on-demand size controllable droplet generation, falling direction manipulation, and repulsion. We controlled the size of the generated gallium-based liquid metal droplets by adjusting the amplitude of the applied electric field. The volume and the number of the generated liquid metal droplet depending on flow rate and applied voltage were measured. We also studied time-dependent falling velocity of the generated liquid metal droplet according to various applied voltages. In addition, by changing the electric field which was achieved by controlling the position of the circular-shaped electrode, the falling direction of liquid metal droplet can be manipulated. Finally, the electro-hydrodynamic repulsion of the liquid metal was demonstrated.