New Approach to Estimating the Saturation Flow Rate of a Shared Lane with Permitted Left Turns

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2020-07-23 DOI:10.7307/ptt.v32i4.3458
Veljko Radicevic, N. Krstanoski, Marko Subotić
{"title":"New Approach to Estimating the Saturation Flow Rate of a Shared Lane with Permitted Left Turns","authors":"Veljko Radicevic, N. Krstanoski, Marko Subotić","doi":"10.7307/ptt.v32i4.3458","DOIUrl":null,"url":null,"abstract":"The estimation of the saturation flow rate is of utmost importance when defining the signal plan at intersections. Because of the numerous influential factors, the values of which are hard to be determined, the subject problem is to be regarded as an extremely complex one. This research deals with the estimation of a saturation flow rate of a shared lane with permitted left turns. The suggested algorithm is based on the application of the artificial neural networks where the data for training are received by simulation. The results obtained by the neural networks are compared with multiple linear regression and the known HCM 2010 approach for determining the saturated flow of a shared lane. The testing data have shown that the approach based on the artificial neural networks foresaw statistically significantly better values than the ones obtained by multiple linear regression, with an error of 27 veh/h against 49 veh/h. The HCM 2010 approach is significantly worse than the two others included in this research. The ways of the future development of the suggested method could include additional factors, such as the grade of the traffic lane, the proximity of the bus stops, and others.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v32i4.3458","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The estimation of the saturation flow rate is of utmost importance when defining the signal plan at intersections. Because of the numerous influential factors, the values of which are hard to be determined, the subject problem is to be regarded as an extremely complex one. This research deals with the estimation of a saturation flow rate of a shared lane with permitted left turns. The suggested algorithm is based on the application of the artificial neural networks where the data for training are received by simulation. The results obtained by the neural networks are compared with multiple linear regression and the known HCM 2010 approach for determining the saturated flow of a shared lane. The testing data have shown that the approach based on the artificial neural networks foresaw statistically significantly better values than the ones obtained by multiple linear regression, with an error of 27 veh/h against 49 veh/h. The HCM 2010 approach is significantly worse than the two others included in this research. The ways of the future development of the suggested method could include additional factors, such as the grade of the traffic lane, the proximity of the bus stops, and others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
允许左转的共享车道饱和流量估算新方法
在确定交叉口信号方案时,饱和流率的估计是至关重要的。由于影响主体的因素众多,其数值难以确定,因此主体问题是一个极其复杂的问题。本文研究了允许左转弯的共享车道饱和流量的估计问题。本文提出的算法是基于人工神经网络的应用,通过仿真的方式接收训练数据。将神经网络得到的结果与多元线性回归和已知的HCM 2010方法进行比较,以确定共享车道的饱和流量。测试数据表明,基于人工神经网络的预测结果在统计上明显优于多元线性回归的预测结果,误差为27 veh/h对49 veh/h。HCM 2010方法明显比本研究中包括的其他两种方法差。建议的方法的未来发展可能包括其他因素,如交通车道的等级,公交车站的邻近程度等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1