Semantic automatic annotation method based on artificial intelligence for electric power internet of things

IF 0.9 Q4 TELECOMMUNICATIONS Internet Technology Letters Pub Date : 2023-07-02 DOI:10.1002/itl2.455
Yaxi Jin, Yongkang Zhang, Weihao Xue, Pengfei Shen, Zhaoying Jin, Tao He
{"title":"Semantic automatic annotation method based on artificial intelligence for electric power internet of things","authors":"Yaxi Jin,&nbsp;Yongkang Zhang,&nbsp;Weihao Xue,&nbsp;Pengfei Shen,&nbsp;Zhaoying Jin,&nbsp;Tao He","doi":"10.1002/itl2.455","DOIUrl":null,"url":null,"abstract":"<p>The development of the power Internet of Things is currently underway, and a proposal for a semantic Internet of Things based on artificial intelligence algorithms is made to address the challenges in obtaining prior knowledge for heterogeneous data fusion, improving the real-time performance of the ontology library, and enhancing the efficiency of manual labeling of instance object data in the power field. This proposal introduces an Automatic Semantic Annotation Method to provide an effective knowledge organization model for sensor systems. Data mining knowledge is utilized to drive ontology update and improvement, resulting in more accurate semantic annotation and enhanced machine understanding. Experimental results show that artificial intelligence algorithms can automatically extract concepts from sensory data and achieve automatic semantic annotation during ontology instantiation.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of the power Internet of Things is currently underway, and a proposal for a semantic Internet of Things based on artificial intelligence algorithms is made to address the challenges in obtaining prior knowledge for heterogeneous data fusion, improving the real-time performance of the ontology library, and enhancing the efficiency of manual labeling of instance object data in the power field. This proposal introduces an Automatic Semantic Annotation Method to provide an effective knowledge organization model for sensor systems. Data mining knowledge is utilized to drive ontology update and improvement, resulting in more accurate semantic annotation and enhanced machine understanding. Experimental results show that artificial intelligence algorithms can automatically extract concepts from sensory data and achieve automatic semantic annotation during ontology instantiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的电力物联网语义自动标注方法
目前,电力物联网的发展正在进行中,针对电力领域异构数据融合的先验知识获取、本体库实时性的提升以及实例对象数据人工标注效率的提升等难题,提出了基于人工智能算法的语义物联网方案。本提案介绍了一种自动语义标注方法,为传感器系统提供有效的知识组织模型。利用数据挖掘知识来推动本体的更新和改进,从而实现更准确的语义标注并增强机器理解能力。实验结果表明,人工智能算法可以自动从感知数据中提取概念,并在本体实例化过程中实现自动语义注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Beyond passwords: A multi‐factor authentication approach for robust digital security A framework of survivability model virtualized wireless sensor networks for IOT‐assisted wireless sensor network Issue Information Abnormal behavior monitoring enhanced smart university stadium under the background of “Internet plus”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1