Collaborative inter-prediction on CPU+GPU systems

S. Momcilovic, A. Ilic, N. Roma, L. Sousa
{"title":"Collaborative inter-prediction on CPU+GPU systems","authors":"S. Momcilovic, A. Ilic, N. Roma, L. Sousa","doi":"10.1109/ICIP.2014.7025245","DOIUrl":null,"url":null,"abstract":"In this paper we propose an efficient method for collaborative H.264/AVC inter-prediction in heterogeneous CPU+GPU systems. In order to minimize the overall encoding time, the proposed method provides stable and balanced load distribution of the most computationally demanding video encoding modules, by relying on accurate and dynamically built functional performance models. In an extensive RD analysis, an efficient temporary dependent prediction of the search area center is proposed, which allows dependency-aware workload partitioning and efficient GPU parallelization, while preserving high compression efficiency. The proposed method also introduces efficient communication-aware techniques, which maximize data reusing, and decrease the overhead of expensive data transfers in collaborative video encoding. The experimental results show that the proposed method is able of achieving real-time video encoding for very demanding video coding parameters, i.e. full HD video format, 64×64 pixels search area and the exhaustive motion estimation.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"230 1","pages":"1228-1232"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose an efficient method for collaborative H.264/AVC inter-prediction in heterogeneous CPU+GPU systems. In order to minimize the overall encoding time, the proposed method provides stable and balanced load distribution of the most computationally demanding video encoding modules, by relying on accurate and dynamically built functional performance models. In an extensive RD analysis, an efficient temporary dependent prediction of the search area center is proposed, which allows dependency-aware workload partitioning and efficient GPU parallelization, while preserving high compression efficiency. The proposed method also introduces efficient communication-aware techniques, which maximize data reusing, and decrease the overhead of expensive data transfers in collaborative video encoding. The experimental results show that the proposed method is able of achieving real-time video encoding for very demanding video coding parameters, i.e. full HD video format, 64×64 pixels search area and the exhaustive motion estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CPU+GPU系统协同互预测
本文提出了一种高效的异构CPU+GPU系统协同H.264/AVC互预测方法。为了最大限度地减少整体编码时间,该方法通过精确和动态构建的功能性能模型,为计算量最大的视频编码模块提供稳定和均衡的负载分配。在广泛的RD分析中,提出了一种有效的搜索区域中心临时依赖预测,该预测允许依赖感知的工作负载分区和高效的GPU并行化,同时保持较高的压缩效率。该方法还引入了高效的通信感知技术,最大限度地提高了数据重用,降低了协作视频编码中昂贵的数据传输开销。实验结果表明,该方法能够在全高清视频格式、64×64像素搜索面积和穷举运动估计等对视频编码参数要求很高的情况下实现实时视频编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1