Technologies for Biological and Bioelectrochemical Removal of Inorganic Nitrogen from Wastewater: A Review

Nitrogen Pub Date : 2022-05-14 DOI:10.3390/nitrogen3020020
Diplina Paul, Abhisek Banerjee
{"title":"Technologies for Biological and Bioelectrochemical Removal of Inorganic Nitrogen from Wastewater: A Review","authors":"Diplina Paul, Abhisek Banerjee","doi":"10.3390/nitrogen3020020","DOIUrl":null,"url":null,"abstract":"Water contamination due to various nitrogenous pollutants generated from wastewater treatment plants is a crucial and ubiquitous environmental problem now-a-days. Nitrogen contaminated water has manifold detrimental effects on human health as well as aquatic life. Consequently, various biological treatment processes are employed to transform the undesirable forms of nitrogen in wastewater to safer ones for subsequent discharge. In this review, an overview of various conventional biological treatment processes (viz. nitrification, denitrification, and anammox) have been presented along with recent novel bioelectrochemical methods (viz. microbial fuel cells and microbial electrolysis cells). Additionally, nitrogen is an indispensable nutrient necessary to produce artificial fertilizers by fixing dinitrogen gas from the atmosphere. Thus, this study also explored the potential capability of various nitrogen recovery processes from wastewater (like microalgae, cyanobacteria, struvite precipitation, stripping, and zeolites) that are used in industries. Further, the trade-offs, challenges posed by these processes have been dwelt on along with other biological processes like CANON, SHARON, OLAND, and others.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nitrogen3020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water contamination due to various nitrogenous pollutants generated from wastewater treatment plants is a crucial and ubiquitous environmental problem now-a-days. Nitrogen contaminated water has manifold detrimental effects on human health as well as aquatic life. Consequently, various biological treatment processes are employed to transform the undesirable forms of nitrogen in wastewater to safer ones for subsequent discharge. In this review, an overview of various conventional biological treatment processes (viz. nitrification, denitrification, and anammox) have been presented along with recent novel bioelectrochemical methods (viz. microbial fuel cells and microbial electrolysis cells). Additionally, nitrogen is an indispensable nutrient necessary to produce artificial fertilizers by fixing dinitrogen gas from the atmosphere. Thus, this study also explored the potential capability of various nitrogen recovery processes from wastewater (like microalgae, cyanobacteria, struvite precipitation, stripping, and zeolites) that are used in industries. Further, the trade-offs, challenges posed by these processes have been dwelt on along with other biological processes like CANON, SHARON, OLAND, and others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物与生物电化学去除废水中无机氮技术研究进展
由污水处理厂产生的各种含氮污染物引起的水污染是当今普遍存在的重要环境问题。氮污染的水对人类健康和水生生物有多方面的有害影响。因此,采用各种生物处理工艺将废水中不需要的氮形式转化为更安全的氮形式,以供后续排放。在这篇综述中,概述了各种传统的生物处理工艺(即硝化、反硝化和厌氧氨氧化)以及最近的新型生物电化学方法(即微生物燃料电池和微生物电解电池)。此外,氮是一种不可缺少的营养物质,通过固定大气中的二氮气体来生产人工肥料。因此,本研究还探索了工业中使用的各种废水氮回收工艺(如微藻、蓝藻、鸟粪石沉淀、剥离和沸石)的潜在能力。此外,这些过程带来的权衡和挑战已经与其他生物过程(如CANON, SHARON, OLAND等)一起进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate Change and Nitrogen Dynamics: Challenges and Strategies for a Sustainable Future Biotransforming of Poultry and Swine Slaughterhouse Waste as an Alternative Protein Source for Ruminant Feeding Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1