Global warming driven by climate change has profound impacts on nitrogen dynamics in terrestrial and aquatic ecosystems. The increased emissions of greenhouse gases alter the distribution and availability of nitrogen, which is a critical nutrient for all living organisms. This review examines the connections between climate change and nitrogen cycling, highlighting the adverse effects on ecosystem health and productivity. The proliferation of nitrogen pollution due to agricultural runoff, industrial effluents, and urban wastewater aggravates eutrophication, leading to significant environmental and economic consequences. The imbalance in nitrogen availability not only affects plant growth and soil fertility but also disrupts aquatic ecosystems, resulting in harmful algal blooms and hypoxic conditions. Effective mitigation and adaptation strategies are essential to addressing these challenges. Sustainable agricultural practices, such as precision farming and the use of slow-release fertilizers, along with robust policies and innovative technologies, like biochar application and nitrification inhibitors, are essential in managing nitrogen levels. This review underscores the importance of interdisciplinary approaches that involve integrating insights from ecology, agronomy, and the social sciences to develop comprehensive solutions. Future research should focus on long-term studies to assess the cumulative impacts of climatic changes on nitrogen availability and ecosystem health to guide policies and management practices for sustainable development.
{"title":"Climate Change and Nitrogen Dynamics: Challenges and Strategies for a Sustainable Future","authors":"A. Viancelli, W. Michelon","doi":"10.3390/nitrogen5030045","DOIUrl":"https://doi.org/10.3390/nitrogen5030045","url":null,"abstract":"Global warming driven by climate change has profound impacts on nitrogen dynamics in terrestrial and aquatic ecosystems. The increased emissions of greenhouse gases alter the distribution and availability of nitrogen, which is a critical nutrient for all living organisms. This review examines the connections between climate change and nitrogen cycling, highlighting the adverse effects on ecosystem health and productivity. The proliferation of nitrogen pollution due to agricultural runoff, industrial effluents, and urban wastewater aggravates eutrophication, leading to significant environmental and economic consequences. The imbalance in nitrogen availability not only affects plant growth and soil fertility but also disrupts aquatic ecosystems, resulting in harmful algal blooms and hypoxic conditions. Effective mitigation and adaptation strategies are essential to addressing these challenges. Sustainable agricultural practices, such as precision farming and the use of slow-release fertilizers, along with robust policies and innovative technologies, like biochar application and nitrification inhibitors, are essential in managing nitrogen levels. This review underscores the importance of interdisciplinary approaches that involve integrating insights from ecology, agronomy, and the social sciences to develop comprehensive solutions. Future research should focus on long-term studies to assess the cumulative impacts of climatic changes on nitrogen availability and ecosystem health to guide policies and management practices for sustainable development.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"29 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. J. Perez-Bautista, G. Álvarez-Fuentes, J. C. García-López, Ricardo Martinez-Martinez, J. A. Roque-Jiménez, N. Ghavipanje, E. Vargas-Bello-Pérez, H. Lee-Rangel
The biotransformation of poultry (PSW) and swine (SSW) slaughterhouse waste might provide protein feedstuffs, ensuring efficient ruminant systems while safeguarding the environment. The present study aimed to evaluate the potential of PSW and SSW as alternative protein feed for ruminant animals. A total of 24 lambs [25.4 ± 3.13 kg of body weight (BW), mean ± SD] were randomly allocated to one of three groups (n = 8): a control diet formulated with typical protein ingredients (CTRL) and two diets formulated with PSW or SSW meal as a protein source. Dietary inclusion of PSW or SSW did not alter (p = 0.05) dry matter intake or final BW. However, animals fed SSW showed the highest average daily gain (ADG, p = 0.04). In addition, substituting PSW and SSW improved the feed conversation ratio (FCR, p = 0.05). There were no diet effects (p = 0.05) on N intake, while fecal N excretion increased (p = 0.03) with SSW feeding. Compared to CTRL and PSW, ingestion of SSW decreased (p = 0.001) and retained N. The digestibility of crude protein and organic matter remained unchanged (p = 0.05). Additionally, there were no differences (p = 0.05) in potential microbial protein synthesis based on either protein content (SPMp) or energy content (SPMe). Similarly, potential metabolizable protein by protein (PMp) and potential metabolizable energy by protein (PMe) were not affected (p = 0.05). Overall, both PSW and SSW positively influenced the growth performance of ewe lambs. However, further studies are warranted to explore the impact of PWS or SSW feeding on rumen function, nitrogen pollution, and protein escaping the rumen into the intestine in ruminants.
{"title":"Biotransforming of Poultry and Swine Slaughterhouse Waste as an Alternative Protein Source for Ruminant Feeding","authors":"J. J. Perez-Bautista, G. Álvarez-Fuentes, J. C. García-López, Ricardo Martinez-Martinez, J. A. Roque-Jiménez, N. Ghavipanje, E. Vargas-Bello-Pérez, H. Lee-Rangel","doi":"10.3390/nitrogen5020034","DOIUrl":"https://doi.org/10.3390/nitrogen5020034","url":null,"abstract":"The biotransformation of poultry (PSW) and swine (SSW) slaughterhouse waste might provide protein feedstuffs, ensuring efficient ruminant systems while safeguarding the environment. The present study aimed to evaluate the potential of PSW and SSW as alternative protein feed for ruminant animals. A total of 24 lambs [25.4 ± 3.13 kg of body weight (BW), mean ± SD] were randomly allocated to one of three groups (n = 8): a control diet formulated with typical protein ingredients (CTRL) and two diets formulated with PSW or SSW meal as a protein source. Dietary inclusion of PSW or SSW did not alter (p = 0.05) dry matter intake or final BW. However, animals fed SSW showed the highest average daily gain (ADG, p = 0.04). In addition, substituting PSW and SSW improved the feed conversation ratio (FCR, p = 0.05). There were no diet effects (p = 0.05) on N intake, while fecal N excretion increased (p = 0.03) with SSW feeding. Compared to CTRL and PSW, ingestion of SSW decreased (p = 0.001) and retained N. The digestibility of crude protein and organic matter remained unchanged (p = 0.05). Additionally, there were no differences (p = 0.05) in potential microbial protein synthesis based on either protein content (SPMp) or energy content (SPMe). Similarly, potential metabolizable protein by protein (PMp) and potential metabolizable energy by protein (PMe) were not affected (p = 0.05). Overall, both PSW and SSW positively influenced the growth performance of ewe lambs. However, further studies are warranted to explore the impact of PWS or SSW feeding on rumen function, nitrogen pollution, and protein escaping the rumen into the intestine in ruminants.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotations in the upper Midwest are highly productive. However, these narrow rotations are followed by a long winter fallow period. Over time, this has contributed to the loss of agroecological functioning, including increased ground water pollution from nitrate-nitrogen (NO3–N). Winter camelina [Camelina sativa (L.) Crantz] is a third crop that could grow during this fallow period, but its nitrogen (N) use and efficiency are not well known. A study was conducted at three locations in the U.S. upper Midwest to determine the N uptake and use efficiency of winter camelina in response to applied N and N application timing. Agronomic efficiency (AE), internal efficiency (IE), and nitrogen recovery efficiency (NRE) tended to decrease with increasing N rates, especially beyond 67 kg N ha−1 in most instances. Total N uptake ranged from 34 to 176 kg ha−1 across N rates, and was on average 1.5 fold the applied rate. Based on the observed decline in N use efficiency with increasing N rates, an application rate of 67 kg N ha−1 appears to balance efficient N use, high yield, and lower environmental risk compared to higher N rates.
{"title":"Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N","authors":"Stephen Gregg, R. W. Gesch, A. Garcia y Garcia","doi":"10.3390/nitrogen5020033","DOIUrl":"https://doi.org/10.3390/nitrogen5020033","url":null,"abstract":"Maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotations in the upper Midwest are highly productive. However, these narrow rotations are followed by a long winter fallow period. Over time, this has contributed to the loss of agroecological functioning, including increased ground water pollution from nitrate-nitrogen (NO3–N). Winter camelina [Camelina sativa (L.) Crantz] is a third crop that could grow during this fallow period, but its nitrogen (N) use and efficiency are not well known. A study was conducted at three locations in the U.S. upper Midwest to determine the N uptake and use efficiency of winter camelina in response to applied N and N application timing. Agronomic efficiency (AE), internal efficiency (IE), and nitrogen recovery efficiency (NRE) tended to decrease with increasing N rates, especially beyond 67 kg N ha−1 in most instances. Total N uptake ranged from 34 to 176 kg ha−1 across N rates, and was on average 1.5 fold the applied rate. Based on the observed decline in N use efficiency with increasing N rates, an application rate of 67 kg N ha−1 appears to balance efficient N use, high yield, and lower environmental risk compared to higher N rates.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"23 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ragesh Nath R., Shamkumar P. Deshmukh, Sachin J. Kamble, V. Koli
Ammonia, as the second most-produced chemical worldwide, serves diverse roles in the industrial and agricultural sectors. However, its conventional production via the Haber–Bosch process poses significant challenges, including high energy consumption and carbon dioxide emissions. In contrast, photocatalytic nitrogen (N2) fixation, utilizing solar energy with minimal emissions, offers a promising method for sustainable ammonia synthesis. Despite ongoing efforts, photocatalytic nitrogen fixation catalysts continue to encounter challenges such as inadequate N2 adsorption, limited light absorption, and rapid photocarrier recombination. This review explores how the electronic structure and surface characteristics of one-dimensional nanomaterials could mitigate these challenges, making them promising photocatalysts for N2 fixation. The review delves into the underlying photocatalytic mechanisms of nitrogen fixation and various synthesis methods for one-dimensional nanomaterials. Additionally, it highlights the role of the high surface area of one-dimensional nanomaterials in enhancing photocatalytic performance. A comparative analysis of the photocatalytic nitrogen fixation capabilities of different one-dimensional nanomaterials is provided. Lastly, the review offers insights into potential future advancements in photocatalytic nitrogen fixation.
{"title":"Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation","authors":"Ragesh Nath R., Shamkumar P. Deshmukh, Sachin J. Kamble, V. Koli","doi":"10.3390/nitrogen5020023","DOIUrl":"https://doi.org/10.3390/nitrogen5020023","url":null,"abstract":"Ammonia, as the second most-produced chemical worldwide, serves diverse roles in the industrial and agricultural sectors. However, its conventional production via the Haber–Bosch process poses significant challenges, including high energy consumption and carbon dioxide emissions. In contrast, photocatalytic nitrogen (N2) fixation, utilizing solar energy with minimal emissions, offers a promising method for sustainable ammonia synthesis. Despite ongoing efforts, photocatalytic nitrogen fixation catalysts continue to encounter challenges such as inadequate N2 adsorption, limited light absorption, and rapid photocarrier recombination. This review explores how the electronic structure and surface characteristics of one-dimensional nanomaterials could mitigate these challenges, making them promising photocatalysts for N2 fixation. The review delves into the underlying photocatalytic mechanisms of nitrogen fixation and various synthesis methods for one-dimensional nanomaterials. Additionally, it highlights the role of the high surface area of one-dimensional nanomaterials in enhancing photocatalytic performance. A comparative analysis of the photocatalytic nitrogen fixation capabilities of different one-dimensional nanomaterials is provided. Lastly, the review offers insights into potential future advancements in photocatalytic nitrogen fixation.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"81 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140675355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. P. Bruno, A. G. Araújo, Gustavo H. Merten, Audilei S. Ladeira, Victor M. Pinto
The intensive use of agricultural fertilizers containing nitrogen (N) can increase the risk of nitrate (NO3−) leaching. However, little information exists regarding its interaction with other factors that influence NO3− leaching, such as no-tillage, which is associated with different crop rotation schemes. The objective of this study was to quantify the leachate NO3− concentration and load below the root zone in two different crop rotations under no-tillage, with and without mineral N fertilizer. The experiment was conducted in a no-tillage area in Brazil between 2018 and 2020. The factors were two crop rotations (diversified and simplified) and two N fertilization managements (with and without N fertilizer). The soil solution was collected with suction lysimeters (1 m depth), the NO3− concentration (mg L−1) was spectrophotometrically determined, and the NO3− load (kg ha−1) was calculated from the volume of water drained and the NO3− concentration. The results were categorized into 24 evaluation periods. NO3− leaching was extremely low due to low rainfall throughout the experiment, with no significant differences between the factors and treatments. In the presence of N fertilization, leaching was substantially greater when rainfall increased, and vice versa. No significant difference was observed between the crop rotation schemes, except for one period in which the simplified soybean rotation exhibited high leaching. The evaluated treatments showed less NO3− leaching during the four periods when grass species were cultivated, indicating the importance of grasses in rotation systems.
{"title":"Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study","authors":"I. P. Bruno, A. G. Araújo, Gustavo H. Merten, Audilei S. Ladeira, Victor M. Pinto","doi":"10.3390/nitrogen5020022","DOIUrl":"https://doi.org/10.3390/nitrogen5020022","url":null,"abstract":"The intensive use of agricultural fertilizers containing nitrogen (N) can increase the risk of nitrate (NO3−) leaching. However, little information exists regarding its interaction with other factors that influence NO3− leaching, such as no-tillage, which is associated with different crop rotation schemes. The objective of this study was to quantify the leachate NO3− concentration and load below the root zone in two different crop rotations under no-tillage, with and without mineral N fertilizer. The experiment was conducted in a no-tillage area in Brazil between 2018 and 2020. The factors were two crop rotations (diversified and simplified) and two N fertilization managements (with and without N fertilizer). The soil solution was collected with suction lysimeters (1 m depth), the NO3− concentration (mg L−1) was spectrophotometrically determined, and the NO3− load (kg ha−1) was calculated from the volume of water drained and the NO3− concentration. The results were categorized into 24 evaluation periods. NO3− leaching was extremely low due to low rainfall throughout the experiment, with no significant differences between the factors and treatments. In the presence of N fertilization, leaching was substantially greater when rainfall increased, and vice versa. No significant difference was observed between the crop rotation schemes, except for one period in which the simplified soybean rotation exhibited high leaching. The evaluated treatments showed less NO3− leaching during the four periods when grass species were cultivated, indicating the importance of grasses in rotation systems.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":" 41","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140685731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily French, Ashley R. Smyth, Laura K. Reynolds, Kenneth A. Moore
Eelgrass (Zostera marina) loss occurs worldwide due to increasing water temperatures and decreasing water quality. In the U.S., widgeongrass (Ruppia maritima), a more heat-tolerant seagrass species, is replacing eelgrass in certain areas. Seagrasses enhance sediment denitrification, which helps to mitigate excess nitrogen in coastal systems. Widgeongrass and eelgrass have different characteristics, which may affect sediment nitrogen cycling. We compared net N2 fluxes from vegetated areas (eelgrass and widgeongrass beds, using intact cores that included sediment and plants) and adjacent unvegetated areas from the York River, in the lower Chesapeake Bay during the spring and summer of one year. We found that seagrass biomass, sediment organic matter, and NH4+ fluxes were significantly higher in eelgrass beds than in widgeongrass beds. Eelgrass was also net denitrifying during both seasons, while widgeongrass was only net denitrifying in the summer. Despite differences in the spring, the seagrass beds had a similar rate of N2 production in the summer and both had higher denitrification rates than unvegetated sediments. Both species are important ecosystem components that can help to mitigate eutrophication in coastal areas. However, as the relative composition of these species continues to change, differences in sediment nitrogen cycling may affect regional denitrification capacity.
{"title":"Nitrogen Cycling in Widgeongrass and Eelgrass Beds in the Lower Chesapeake Bay","authors":"Emily French, Ashley R. Smyth, Laura K. Reynolds, Kenneth A. Moore","doi":"10.3390/nitrogen5020021","DOIUrl":"https://doi.org/10.3390/nitrogen5020021","url":null,"abstract":"Eelgrass (Zostera marina) loss occurs worldwide due to increasing water temperatures and decreasing water quality. In the U.S., widgeongrass (Ruppia maritima), a more heat-tolerant seagrass species, is replacing eelgrass in certain areas. Seagrasses enhance sediment denitrification, which helps to mitigate excess nitrogen in coastal systems. Widgeongrass and eelgrass have different characteristics, which may affect sediment nitrogen cycling. We compared net N2 fluxes from vegetated areas (eelgrass and widgeongrass beds, using intact cores that included sediment and plants) and adjacent unvegetated areas from the York River, in the lower Chesapeake Bay during the spring and summer of one year. We found that seagrass biomass, sediment organic matter, and NH4+ fluxes were significantly higher in eelgrass beds than in widgeongrass beds. Eelgrass was also net denitrifying during both seasons, while widgeongrass was only net denitrifying in the summer. Despite differences in the spring, the seagrass beds had a similar rate of N2 production in the summer and both had higher denitrification rates than unvegetated sediments. Both species are important ecosystem components that can help to mitigate eutrophication in coastal areas. However, as the relative composition of these species continues to change, differences in sediment nitrogen cycling may affect regional denitrification capacity.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140689813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gustavo Montes-Montes, Román González-Escobedo, L. Muñoz-Castellanos, G. Ávila-Quezada, Obed Ramírez-Sánchez, Alejandra Borrego-Loya, Ismael Ortiz-Aguirre, Zilia Y. Muñoz-Ramírez
The rhizospheric microorganisms of agricultural crops play a crucial role in plant growth and nutrient cycling. In this study, we isolated two Streptomyces strains, Streptomyces sp. LM32 and Streptomyces sp. LM65, from the rhizosphere of Vitis vinifera L. We then conducted genomic analysis by assembling, annotating, and inferring phylogenomic information from the whole genome sequences. Streptomyces sp. strain LM32 had a genome size of 8.1 Mb and a GC content of 72.14%, while Streptomyces sp. strain LM65 had a genome size of 7.3 Mb and a GC content of 71%. Through ANI results, as well as phylogenomic, pan-, and core-genome analysis, we found that strain LM32 was closely related to the species S. coelicoflavus, while strain LM65 was closely related to the species S. achromogenes subsp. achromogenes. We annotated the functional categories of genes encoded in both strains, which revealed genes involved in nitrogen and phosphorus metabolism. This suggests that these strains have the potential to enhance nutrient availability in the soil, promoting agricultural sustainability. Additionally, we identified gene clusters associated with nitrate and nitrite ammonification, nitrosative stress, allantoin utilization, ammonia assimilation, denitrifying reductase gene clusters, high-affinity phosphate transporter and control of PHO regulon, polyphosphate, and phosphate metabolism. These findings highlight the ecological roles of these strains in sustainable agriculture, particularly in grapevine and other agricultural crop systems.
农作物根瘤微生物在植物生长和养分循环中起着至关重要的作用。本研究从葡萄根瘤菌中分离了两株链霉菌,分别为 LM32 链霉菌和 LM65 链霉菌,并对其全基因组序列进行了组装、注释和系统进化分析。LM32 链霉菌株的基因组大小为 8.1 Mb,GC 含量为 72.14%;LM65 链霉菌株的基因组大小为 7.3 Mb,GC 含量为 71%。通过 ANI 结果以及系统发生组、泛基因组和核心基因组分析,我们发现菌株 LM32 与 S. coelicoflavus 关系密切,而菌株 LM65 与 S. achromogenes subsp.我们对两株菌株编码基因的功能类别进行了注释,发现了涉及氮和磷代谢的基因。这表明,这些菌株有可能提高土壤中养分的可用性,促进农业的可持续发展。此外,我们还发现了与硝酸盐和亚硝酸盐氨化、亚硝酸盐胁迫、尿囊素利用、氨同化、反硝化还原酶基因簇、高亲和性磷酸盐转运体以及 PHO 调节子、多磷酸盐和磷酸盐代谢控制有关的基因簇。这些发现凸显了这些菌株在可持续农业中的生态作用,特别是在葡萄和其他农作物系统中的作用。
{"title":"Whole Genome Analysis of Streptomyces spp. Strains Isolated from the Rhizosphere of Vitis vinifera L. Reveals Their Role in Nitrogen and Phosphorus Metabolism","authors":"Gustavo Montes-Montes, Román González-Escobedo, L. Muñoz-Castellanos, G. Ávila-Quezada, Obed Ramírez-Sánchez, Alejandra Borrego-Loya, Ismael Ortiz-Aguirre, Zilia Y. Muñoz-Ramírez","doi":"10.3390/nitrogen5020020","DOIUrl":"https://doi.org/10.3390/nitrogen5020020","url":null,"abstract":"The rhizospheric microorganisms of agricultural crops play a crucial role in plant growth and nutrient cycling. In this study, we isolated two Streptomyces strains, Streptomyces sp. LM32 and Streptomyces sp. LM65, from the rhizosphere of Vitis vinifera L. We then conducted genomic analysis by assembling, annotating, and inferring phylogenomic information from the whole genome sequences. Streptomyces sp. strain LM32 had a genome size of 8.1 Mb and a GC content of 72.14%, while Streptomyces sp. strain LM65 had a genome size of 7.3 Mb and a GC content of 71%. Through ANI results, as well as phylogenomic, pan-, and core-genome analysis, we found that strain LM32 was closely related to the species S. coelicoflavus, while strain LM65 was closely related to the species S. achromogenes subsp. achromogenes. We annotated the functional categories of genes encoded in both strains, which revealed genes involved in nitrogen and phosphorus metabolism. This suggests that these strains have the potential to enhance nutrient availability in the soil, promoting agricultural sustainability. Additionally, we identified gene clusters associated with nitrate and nitrite ammonification, nitrosative stress, allantoin utilization, ammonia assimilation, denitrifying reductase gene clusters, high-affinity phosphate transporter and control of PHO regulon, polyphosphate, and phosphate metabolism. These findings highlight the ecological roles of these strains in sustainable agriculture, particularly in grapevine and other agricultural crop systems.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140697607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Morais, Carlos Alberto Silva, Suduan Gao, Leônidas Carrijo Azevedo Melo, Bruno Cocco Lago, Jéssica Cristina Teodoro, Luiz Roberto Guimarães Guilherme
Much progress has been made in understanding the conditions of biochar production related to biochar properties and carbon (C). Still, very little knowledge has been gained regarding the effects on nitrogen (N), one of the most critical nutrients affected by pyrolysis temperature (PT). Analysis of N in biochar is costly, and alternative methods should be developed to estimate the N content in biochar quickly under different pyrolysis conditions. We hypothesized that there was a correlation between biochar N content and its electrical conductivity (EC). We aimed to evaluate total N and the effect of PT through the correlation with EC, a parameter that can be easily measured. Biochar products derived from coffee husk (CH) and chicken manure (CM) produced at increasing PT (300 to 750 °C) were used for the study and measured for total N and EC. The increase in PT caused significant N loss, consequently reducing total N content in biochars, with the highest loss (82%) and lowest total N content (1.2 g kg−1) found in CM biochar pyrolyzed at 750 °C. The lowest N loss (21% for CH biochar and 36% for CM biochar) was observed at a PT of 300 °C. A negative correlation between EC and total N and a positive correlation with N loss were found in both biochar products across the wide range of PT investigated. To preserve the N content in biochars, the PT should not exceed 400 °C. Our results indicate that EC is a fast and accurate biochar proxy attribute capable of predicting the N content and its loss in coffee husk and chicken manure-derived biochars as the pyrolysis temperature increased from 300 °C to 750 °C and could be used as an alternative to predict the N in biochar easily. A more extensive set of biochar samples and pyrolysis conditions should be tested to validate this approach.
在了解与生物炭特性和碳(C)有关的生物炭生产条件方面取得了很大进展。然而,对于氮(N)的影响却知之甚少,而氮是受热解温度(PT)影响的最关键的养分之一。生物炭中氮的分析成本很高,因此应开发替代方法,以便在不同热解条件下快速估算生物炭中的氮含量。我们假设生物炭中的氮含量与其导电率(EC)之间存在相关性。我们的目标是通过与导电率(一个易于测量的参数)的相关性来评估总氮含量和 PT 的影响。研究使用了由咖啡壳(CH)和鸡粪(CM)制成的生物炭产品,并测量了总氮和导电率。温度升高导致氮大量流失,从而降低了生物炭中的总氮含量,在 750 °C 高温分解的 CM 生物炭中,氮流失量最高(82%),总氮含量最低(1.2 g kg-1)。在温度为 300 °C 时,氮的损失最低(CH 生物炭为 21%,CM 生物炭为 36%)。在所研究的广泛 PT 范围内,两种生物炭产品的导电率与总氮量呈负相关,而与氮损失量呈正相关。为了保持生物炭中的氮含量,PT 温度不应超过 400 °C。我们的研究结果表明,随着热解温度从 300 °C 升高到 750 °C,氨基甲酸乙酯是一种快速、准确的生物炭替代属性,能够预测咖啡壳和鸡粪衍生生物炭中的氮含量及其损失量,可作为一种替代方法轻松预测生物炭中的氮含量。应测试更多的生物炭样品和热解条件,以验证这种方法。
{"title":"Empirical Correlation between Electrical Conductivity and Nitrogen Content in Biochar as Influenced by Pyrolysis Temperature","authors":"E. Morais, Carlos Alberto Silva, Suduan Gao, Leônidas Carrijo Azevedo Melo, Bruno Cocco Lago, Jéssica Cristina Teodoro, Luiz Roberto Guimarães Guilherme","doi":"10.3390/nitrogen5020019","DOIUrl":"https://doi.org/10.3390/nitrogen5020019","url":null,"abstract":"Much progress has been made in understanding the conditions of biochar production related to biochar properties and carbon (C). Still, very little knowledge has been gained regarding the effects on nitrogen (N), one of the most critical nutrients affected by pyrolysis temperature (PT). Analysis of N in biochar is costly, and alternative methods should be developed to estimate the N content in biochar quickly under different pyrolysis conditions. We hypothesized that there was a correlation between biochar N content and its electrical conductivity (EC). We aimed to evaluate total N and the effect of PT through the correlation with EC, a parameter that can be easily measured. Biochar products derived from coffee husk (CH) and chicken manure (CM) produced at increasing PT (300 to 750 °C) were used for the study and measured for total N and EC. The increase in PT caused significant N loss, consequently reducing total N content in biochars, with the highest loss (82%) and lowest total N content (1.2 g kg−1) found in CM biochar pyrolyzed at 750 °C. The lowest N loss (21% for CH biochar and 36% for CM biochar) was observed at a PT of 300 °C. A negative correlation between EC and total N and a positive correlation with N loss were found in both biochar products across the wide range of PT investigated. To preserve the N content in biochars, the PT should not exceed 400 °C. Our results indicate that EC is a fast and accurate biochar proxy attribute capable of predicting the N content and its loss in coffee husk and chicken manure-derived biochars as the pyrolysis temperature increased from 300 °C to 750 °C and could be used as an alternative to predict the N in biochar easily. A more extensive set of biochar samples and pyrolysis conditions should be tested to validate this approach.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"42 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140726742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oussama Hnizil, Aziz Baidani, Ilham Khlila, N. Nsarellah, A. Amamou
This five-year study (2016–2021) in Morocco’s Mediterranean climate investigated the effect of nitrogen fertilization and genotypic selection on wheat yield and associated components. Utilizing a split-plot design, the study assessed five wheat genotypes—’Faraj’, ‘Luiza’, ‘Itri’, ‘Karim’ and ‘Nassira’—under three nitrogen application rates (120, 60 and 0 kg/ha) across thirty plots with two replicates. Interactions between nitrogen and year showed marked significance in yield (p = 0.001), biomass (p = 0.002), TKW (p = 0.003) and Spk/m2 (p = 0.001), underscoring the variability in optimal nitrogen application rates across different years. Additionally, significant interactions between variety and year were observed for biomass (p = 0.001) and G/m2 (p = 0.001), indicating variability in the performance of different varieties across years. The ‘Itri’ genotype showed the highest yield in 2017, while ‘Luiza’ was pre-eminent in 2018, with ‘Itri’ producing the most biomass. ‘Faraj’ demonstrated consistent superiority in yield and biomass during 2019 and 2020. Our integrated principal component analysis and quadratic models elucidated that an intermediate nitrogen rate of 60 kg/ha (N2) was particularly advantageous for the ‘Faraj’ and ‘Karim’ genotypes. These findings highlight the substantial impact of informed nitrogen level adjustment and genotypic selection on yield optimization.
{"title":"Assessing the Impact of Nitrogen Fertilization, Variety Selection, Year and Their Interaction on Wheat Yield and Yield Components","authors":"Oussama Hnizil, Aziz Baidani, Ilham Khlila, N. Nsarellah, A. Amamou","doi":"10.3390/nitrogen5020018","DOIUrl":"https://doi.org/10.3390/nitrogen5020018","url":null,"abstract":"This five-year study (2016–2021) in Morocco’s Mediterranean climate investigated the effect of nitrogen fertilization and genotypic selection on wheat yield and associated components. Utilizing a split-plot design, the study assessed five wheat genotypes—’Faraj’, ‘Luiza’, ‘Itri’, ‘Karim’ and ‘Nassira’—under three nitrogen application rates (120, 60 and 0 kg/ha) across thirty plots with two replicates. Interactions between nitrogen and year showed marked significance in yield (p = 0.001), biomass (p = 0.002), TKW (p = 0.003) and Spk/m2 (p = 0.001), underscoring the variability in optimal nitrogen application rates across different years. Additionally, significant interactions between variety and year were observed for biomass (p = 0.001) and G/m2 (p = 0.001), indicating variability in the performance of different varieties across years. The ‘Itri’ genotype showed the highest yield in 2017, while ‘Luiza’ was pre-eminent in 2018, with ‘Itri’ producing the most biomass. ‘Faraj’ demonstrated consistent superiority in yield and biomass during 2019 and 2020. Our integrated principal component analysis and quadratic models elucidated that an intermediate nitrogen rate of 60 kg/ha (N2) was particularly advantageous for the ‘Faraj’ and ‘Karim’ genotypes. These findings highlight the substantial impact of informed nitrogen level adjustment and genotypic selection on yield optimization.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"135 47","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140725634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lubia S. Teixeira, Thiago A. L. Mota, Deisy J. C. Lopez, Victor A. Amorim, Carla S. Almeida, G. A. Souza, Dimas M. Ribeiro
Selenium (Se) and nitrate have the potential to modify rice root architecture, but it is unclear how Se is linked to changes in the rice seedlings nitrate status. Thus, rice seedlings were grown in nutrient solutions containing either 0- or 10-µM Se that were supplemented with 0.05 (low nitrate condition) or 5.0 mM nitrate (high nitrate condition). Se application to seedlings treated with low nitrate led to sugar accumulation in shoot and root and increased cytokinin concentrations in root, while decreasing cytokinin concentrations in shoot compared with seedlings in 0.05 mM nitrate alone. This, in turn, resulted in decreased shoot growth, while downregulation of OsXTH and OsEXP negatively affected root expansion. On the other hand, Se combined with 5.0 mM nitrate did not affect sugar concentration in tissues compared with seedlings in 5.0 mM nitrate. Moreover, Se negatively regulated the cytokinin biosynthesis in shoot and root of seedlings grown under 5.0 mM nitrate. The reduction in cytokinin concentrations by Se under high nitrate condition decreased shoot growth, but increased root growth through induction of OsXTH and OsEXP. Thus, many of the effects of Se in shoot and root growth are due to a shift in nitrate status of the seedlings.
{"title":"Cytokinin Biosynthesis Is Affected by Selenium and Nitrate Availabilities to Regulate Shoot and Root Growth in Rice Seedlings","authors":"Lubia S. Teixeira, Thiago A. L. Mota, Deisy J. C. Lopez, Victor A. Amorim, Carla S. Almeida, G. A. Souza, Dimas M. Ribeiro","doi":"10.3390/nitrogen5010013","DOIUrl":"https://doi.org/10.3390/nitrogen5010013","url":null,"abstract":"Selenium (Se) and nitrate have the potential to modify rice root architecture, but it is unclear how Se is linked to changes in the rice seedlings nitrate status. Thus, rice seedlings were grown in nutrient solutions containing either 0- or 10-µM Se that were supplemented with 0.05 (low nitrate condition) or 5.0 mM nitrate (high nitrate condition). Se application to seedlings treated with low nitrate led to sugar accumulation in shoot and root and increased cytokinin concentrations in root, while decreasing cytokinin concentrations in shoot compared with seedlings in 0.05 mM nitrate alone. This, in turn, resulted in decreased shoot growth, while downregulation of OsXTH and OsEXP negatively affected root expansion. On the other hand, Se combined with 5.0 mM nitrate did not affect sugar concentration in tissues compared with seedlings in 5.0 mM nitrate. Moreover, Se negatively regulated the cytokinin biosynthesis in shoot and root of seedlings grown under 5.0 mM nitrate. The reduction in cytokinin concentrations by Se under high nitrate condition decreased shoot growth, but increased root growth through induction of OsXTH and OsEXP. Thus, many of the effects of Se in shoot and root growth are due to a shift in nitrate status of the seedlings.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"99 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140079875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}