Data Sharing Privacy Metrics Model Based on Information Entropy and Group Privacy Preference

Yihong Guo, Jinxin Zuo, Ziyu Guo, Jiahao Qi, Yueming Lu
{"title":"Data Sharing Privacy Metrics Model Based on Information Entropy and Group Privacy Preference","authors":"Yihong Guo, Jinxin Zuo, Ziyu Guo, Jiahao Qi, Yueming Lu","doi":"10.3390/cryptography7010011","DOIUrl":null,"url":null,"abstract":"With the development of the mobile internet, service providers obtain data and resources through a large number of terminal user devices. They use private data for business empowerment, which improves the user experience while causing users’ privacy disclosure. Current research ignores the impact of disclosing user non-sensitive attributes under a single scenario of data sharing and lacks consideration of users’ privacy preferences. This paper constructs a data-sharing privacy metrics model based on information entropy and group privacy preferences. Use information theory to model the correlation of the privacy metrics problem, the improved entropy weight algorithm to measure the overall privacy of the data, and the analytic hierarchy process to correct user privacy preferences. Experiments show that this privacy metrics model can better quantify data privacy than conventional methods, provide a reliable evaluation mechanism for privacy security in data sharing and publishing scenarios, and help to enhance data privacy protection.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"98 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of the mobile internet, service providers obtain data and resources through a large number of terminal user devices. They use private data for business empowerment, which improves the user experience while causing users’ privacy disclosure. Current research ignores the impact of disclosing user non-sensitive attributes under a single scenario of data sharing and lacks consideration of users’ privacy preferences. This paper constructs a data-sharing privacy metrics model based on information entropy and group privacy preferences. Use information theory to model the correlation of the privacy metrics problem, the improved entropy weight algorithm to measure the overall privacy of the data, and the analytic hierarchy process to correct user privacy preferences. Experiments show that this privacy metrics model can better quantify data privacy than conventional methods, provide a reliable evaluation mechanism for privacy security in data sharing and publishing scenarios, and help to enhance data privacy protection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息熵和群体隐私偏好的数据共享隐私度量模型
随着移动互联网的发展,运营商通过大量的终端用户设备获取数据和资源。他们使用私有数据进行业务授权,这在改善用户体验的同时也导致了用户隐私的泄露。目前的研究忽略了在单一数据共享场景下披露用户非敏感属性的影响,缺乏对用户隐私偏好的考虑。本文构建了基于信息熵和群体隐私偏好的数据共享隐私度量模型。利用信息论对隐私度量问题的相关性进行建模,利用改进的熵权算法对数据的整体隐私性进行度量,利用层次分析法对用户隐私偏好进行修正。实验表明,该隐私度量模型比传统方法能更好地量化数据隐私,为数据共享和发布场景下的隐私安全提供可靠的评估机制,有助于增强数据隐私保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MMM: Authenticated Encryption with Minimum Secret State for Masking Don't Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees LPN-based Attacks in the White-box Setting Enhancing Quality and Security of the PLL-TRNG Protecting Dilithium against Leakage Revisited Sensitivity Analysis and Improved Implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1