Claus Stadler, Muhammad Saleem, Qaiser Mehmood, C. Buil-Aranda, M. Dumontier, A. Hogan, Axel-Cyrille Ngonga Ngomo
{"title":"LSQ 2.0: A linked dataset of SPARQL query logs","authors":"Claus Stadler, Muhammad Saleem, Qaiser Mehmood, C. Buil-Aranda, M. Dumontier, A. Hogan, Axel-Cyrille Ngonga Ngomo","doi":"10.3233/sw-223015","DOIUrl":null,"url":null,"abstract":"We present the Linked SPARQL Queries (LSQ) dataset, which currently describes 43.95 million executions of 11.56 million unique SPARQL queries extracted from the logs of 27 different endpoints. The LSQ dataset provides RDF descriptions of each such query, which are indexed in a public LSQ endpoint, allowing interested parties to find queries with the characteristics they require. We begin by describing the use cases envisaged for the LSQ dataset, which include applications for research on common features of queries, for building custom benchmarks, and for designing user interfaces. We then discuss how LSQ has been used in practice since the release of four initial SPARQL logs in 2015. We discuss the model and vocabulary that we use to represent these queries in RDF. We then provide a brief overview of the 27 endpoints from which we extracted queries in terms of the domain to which they pertain and the data they contain. We provide statistics on the queries included from each log, including the number of query executions, unique queries, as well as distributions of queries for a variety of selected characteristics. We finally discuss how the LSQ dataset is hosted and how it can be accessed and leveraged by interested parties for their use cases.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"68 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-223015","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
We present the Linked SPARQL Queries (LSQ) dataset, which currently describes 43.95 million executions of 11.56 million unique SPARQL queries extracted from the logs of 27 different endpoints. The LSQ dataset provides RDF descriptions of each such query, which are indexed in a public LSQ endpoint, allowing interested parties to find queries with the characteristics they require. We begin by describing the use cases envisaged for the LSQ dataset, which include applications for research on common features of queries, for building custom benchmarks, and for designing user interfaces. We then discuss how LSQ has been used in practice since the release of four initial SPARQL logs in 2015. We discuss the model and vocabulary that we use to represent these queries in RDF. We then provide a brief overview of the 27 endpoints from which we extracted queries in terms of the domain to which they pertain and the data they contain. We provide statistics on the queries included from each log, including the number of query executions, unique queries, as well as distributions of queries for a variety of selected characteristics. We finally discuss how the LSQ dataset is hosted and how it can be accessed and leveraged by interested parties for their use cases.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.