Sectoral emissions contributions to anthropogenic aerosol scenarios over the Indian subcontinent and effects of mitigation on air quality, climate, and health

IF 1.2 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Climate Research Pub Date : 2021-10-21 DOI:10.3354/cr01671
P. Ajay, Binita Pathak, P. Bhuyan, F. Solmon, F. Giorgi
{"title":"Sectoral emissions contributions to anthropogenic aerosol scenarios over the Indian subcontinent and effects of mitigation on air quality, climate, and health","authors":"P. Ajay, Binita Pathak, P. Bhuyan, F. Solmon, F. Giorgi","doi":"10.3354/cr01671","DOIUrl":null,"url":null,"abstract":"Over the last few decades, there have been substantial changes in sectoral anthropogenic emissions over India, modifying the region’s air quality and radiation budget. However, these sectoral contributions are still poorly understood. This study attempts to estimate the anthropogenic aerosols and SO2 emissions from different sectors over the Indian subcontinent and their implications for regional climate and human health using the RegCM4.4 regional climate model and the Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) global model. We consider current emissions as well as emissions with a mitigation scenario for the year 2030. The RegCM simulations with ECLIPSE v5a as emissions inventory for 2000 and 2015 show high SO2 emissions from the energy sector, substantially contributing to anthropogenic aerosol optical depth (AODanthro) and climate forcing. The residential and transport sectors’ imprint on climate forcing is increased in 2015 compared to 2000. Higher AODanthro (0.35-0.45) occurrence days substantially decrease under a mitigation scenario by 5-10% over the Indo-Gangetic Plain. In particular, over 5�megacities (Delhi, Kolkata, Mumbai, Chennai, and Bangalore) of India, the concentrations of black carbon, organic carbon, and particulate matter ≤2.5 µm in diameter (PM2.5) are substantially reduced under the mitigation scenario; however, SO2 is increased. The reduction of pollutants contributes to significantly reducing life expectancy loss in all cities. This study advocates the need for future emission control policies with a synergy between air quality and climate change.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/cr01671","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Over the last few decades, there have been substantial changes in sectoral anthropogenic emissions over India, modifying the region’s air quality and radiation budget. However, these sectoral contributions are still poorly understood. This study attempts to estimate the anthropogenic aerosols and SO2 emissions from different sectors over the Indian subcontinent and their implications for regional climate and human health using the RegCM4.4 regional climate model and the Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) global model. We consider current emissions as well as emissions with a mitigation scenario for the year 2030. The RegCM simulations with ECLIPSE v5a as emissions inventory for 2000 and 2015 show high SO2 emissions from the energy sector, substantially contributing to anthropogenic aerosol optical depth (AODanthro) and climate forcing. The residential and transport sectors’ imprint on climate forcing is increased in 2015 compared to 2000. Higher AODanthro (0.35-0.45) occurrence days substantially decrease under a mitigation scenario by 5-10% over the Indo-Gangetic Plain. In particular, over 5�megacities (Delhi, Kolkata, Mumbai, Chennai, and Bangalore) of India, the concentrations of black carbon, organic carbon, and particulate matter ≤2.5 µm in diameter (PM2.5) are substantially reduced under the mitigation scenario; however, SO2 is increased. The reduction of pollutants contributes to significantly reducing life expectancy loss in all cities. This study advocates the need for future emission control policies with a synergy between air quality and climate change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部门排放对印度次大陆人为气溶胶情景的贡献以及减缓对空气质量、气候和健康的影响
在过去的几十年里,印度的部门人为排放发生了重大变化,改变了该地区的空气质量和辐射收支。然而,人们对这些部门的贡献仍然知之甚少。本研究试图利用RegCM4.4区域气候模式和温室气体-空气污染相互作用和协同效应(GAINS)全球模式估算印度次大陆不同部门的人为气溶胶和二氧化硫排放及其对区域气候和人类健康的影响。我们考虑目前的排放量以及2030年减排情景下的排放量。以ECLIPSE v5a为排放清单的2000年和2015年RegCM模拟显示,能源部门的SO2排放量很高,这在很大程度上促进了人为气溶胶光学深度(AODanthro)和气候强迫。与2000年相比,2015年住宅和交通部门对气候强迫的影响有所增加。在减缓情景下,印度-恒河平原的高AODanthro(0.35-0.45)发生日数大幅减少5-10%。特别是在印度的5个特大城市(德里、加尔各答、孟买、金奈和班加罗尔),黑碳、有机碳和直径≤2.5微米的颗粒物(PM2.5)的浓度在减缓情景下大幅降低;然而,SO2增加。减少污染物有助于大大减少所有城市的预期寿命损失。本研究主张未来有必要制定空气质量与气候变化之间协同作用的排放控制政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Climate Research
Climate Research 地学-环境科学
CiteScore
2.90
自引率
9.10%
发文量
25
审稿时长
3 months
期刊介绍: Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with: -Interactions of climate with organisms, populations, ecosystems, and human societies -Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation -Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management -Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels -Historical case studies, including paleoecology and paleoclimatology -Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards -Land-surface climatology. Soil degradation, deforestation, desertification -Assessment and implementation of adaptations and response options -Applications of climate models and modelled future climate scenarios. Methodology in model development and application
期刊最新文献
Spatio-temporal changes of heat and cold wave patterns in western Iran Adoption of adaptive behavior and its peer effects on grain growers in Jiangxi Province, China Improving factor efficiency under climate change through adaptive behavior: analysis of genetically modified insect-resistant cotton Farmers’ adaptation to climate change and water consumption in southwest Iran: application of switching regression Adaptation to climate impacts on rice production: an analysis of dry zone farmers in central Myanmar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1