ITER cold VDEs in the limit of perfectly conducting walls

C. Clauser, S. Jardin
{"title":"ITER cold VDEs in the limit of perfectly conducting walls","authors":"C. Clauser, S. Jardin","doi":"10.1063/5.0037464","DOIUrl":null,"url":null,"abstract":"Recently, it has been shown that a vertical displacement event (VDE) can occur in ITER even when the walls are perfect conductors, as a consequence of the current quench [A. H. Boozer, Physics of Plasmas 26 114501 (2019)]. We used the extended-MHD code M3D-C1 with an ITER-like equilibrium and induced a current quench to explore cold VDEs in the limit of perfectly conducting walls, using different wall geometries. In the particular case of a rectangular wall with the side walls far away from the plasma, we obtained very good agreement with the analytical model developed by Boozer that considers a top/bottom flat-plates wall. We show that the solution in which the plasma stays at the initial equilibrium position is improved when bringing the side walls closer to the plasma. When using the ITER first wall in the limit of a perfect conductor, the plasma stays stable at the initial equilibrium position far beyond the value predicted by the flat-plates wall limit. On the other hand, when considering the limit in which the inner shell of the ITER vacuum vessel is acting as a perfect conductor, the plasma is displaced during the current quench but the edge safety factor stays above $2$ longer in the current decay compared to the flat-plates wall limit. In all the simulated cases, the vertical displacement is found to be strongly dependent on the plasma current, in agreement with a similar finding in the flat-plates wall limit, showing an important difference with usual VDEs in which the current quench is not a necessary condition.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0037464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, it has been shown that a vertical displacement event (VDE) can occur in ITER even when the walls are perfect conductors, as a consequence of the current quench [A. H. Boozer, Physics of Plasmas 26 114501 (2019)]. We used the extended-MHD code M3D-C1 with an ITER-like equilibrium and induced a current quench to explore cold VDEs in the limit of perfectly conducting walls, using different wall geometries. In the particular case of a rectangular wall with the side walls far away from the plasma, we obtained very good agreement with the analytical model developed by Boozer that considers a top/bottom flat-plates wall. We show that the solution in which the plasma stays at the initial equilibrium position is improved when bringing the side walls closer to the plasma. When using the ITER first wall in the limit of a perfect conductor, the plasma stays stable at the initial equilibrium position far beyond the value predicted by the flat-plates wall limit. On the other hand, when considering the limit in which the inner shell of the ITER vacuum vessel is acting as a perfect conductor, the plasma is displaced during the current quench but the edge safety factor stays above $2$ longer in the current decay compared to the flat-plates wall limit. In all the simulated cases, the vertical displacement is found to be strongly dependent on the plasma current, in agreement with a similar finding in the flat-plates wall limit, showing an important difference with usual VDEs in which the current quench is not a necessary condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ITER在完全导电壁的极限下冷却vde
最近,研究表明,由于电流猝灭,即使壁面是完美导体,在ITER中也可能发生垂直位移事件(VDE)。刘建军,刘建军。等离子体物理研究[j]。我们使用扩展的mhd代码M3D-C1,具有类似iter的平衡,并诱导电流淬火,以探索在完美导电壁极限下的冷vde,使用不同的壁几何形状。在侧壁远离等离子体的矩形壁的特殊情况下,我们得到了与Boozer考虑顶/底平板壁的分析模型非常吻合的结果。我们表明,当使侧壁更接近等离子体时,等离子体停留在初始平衡位置的溶液得到改善。当在完美导体极限下使用ITER第一壁时,等离子体在初始平衡位置保持稳定,远远超出平板壁极限所预测的值。另一方面,当考虑到ITER真空容器的内壳作为完美导体的极限时,等离子体在电流淬火期间发生位移,但与平板壁极限相比,边缘安全系数在电流衰减中保持在2美元以上的时间更长。在所有模拟情况下,发现垂直位移强烈依赖于等离子体电流,与平板壁面极限的类似发现一致,显示出与通常的vde的重要区别,其中电流淬火不是必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetic simulation of electron cyclotron resonance assisted gas breakdown in split-biased waveguides for ITER collective Thomson scattering diagnostic Topological phases, topological phase transition, and bulk-edge correspondence of magnetized cold plasmas Non-Maxwellianity of electron distributions near Earth's magnetopause Theory of Plasma-Cascade Instability Ion cyclotron parametric turbulence and anomalous convective transport of the inhomogeneous plasma in front of the fast wave antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1