Spherical Near Field offset measurements using downsampled acquisition and advanced NF/FF transformation algorithm

L. Foged, F. Saccardi, F. Mioc, P. Iversen
{"title":"Spherical Near Field offset measurements using downsampled acquisition and advanced NF/FF transformation algorithm","authors":"L. Foged, F. Saccardi, F. Mioc, P. Iversen","doi":"10.1109/EUCAP.2016.7481126","DOIUrl":null,"url":null,"abstract":"Spherical Near Field (NF) measurements are widely used in order to accurately characterize the radiating performance of antennas. The main drawback of this type of measurement is the acquisition time that, depending on the electrical size of the Antenna Under Test (AUT), could be very long. This is due to the fact that, in order to correctly evaluate the Far Field (FF) with the NF/FF transformation [1]-[3], the NF has to be sampled over the full sphere with a sampling density that increases with the dimension of the so called AUT minimum sphere [3]. In many spherical NF measurement scenario, it is not possible to locate the AUT in the origin of the measurement sphere resulting in a larger minimum sphere, which implies a denser sampling and a longer acquisition time. An innovative NF/FF technique that allows to drastically reduce the samples density in offset spherical NF measurement is presented in this paper.","PeriodicalId":6509,"journal":{"name":"2016 10th European Conference on Antennas and Propagation (EuCAP)","volume":"61 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUCAP.2016.7481126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Spherical Near Field (NF) measurements are widely used in order to accurately characterize the radiating performance of antennas. The main drawback of this type of measurement is the acquisition time that, depending on the electrical size of the Antenna Under Test (AUT), could be very long. This is due to the fact that, in order to correctly evaluate the Far Field (FF) with the NF/FF transformation [1]-[3], the NF has to be sampled over the full sphere with a sampling density that increases with the dimension of the so called AUT minimum sphere [3]. In many spherical NF measurement scenario, it is not possible to locate the AUT in the origin of the measurement sphere resulting in a larger minimum sphere, which implies a denser sampling and a longer acquisition time. An innovative NF/FF technique that allows to drastically reduce the samples density in offset spherical NF measurement is presented in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用下采样采集和先进的NF/FF变换算法的球面近场偏移测量
为了准确表征天线的辐射性能,球面近场测量得到了广泛的应用。这种测量的主要缺点是采集时间,这取决于被测天线(AUT)的电气尺寸,可能会很长。这是因为,为了用NF/FF变换[1]-[3]正确地评估远场(FF), NF必须在整个球体上采样,采样密度随着所谓的AUT最小球体[3]的尺寸而增加。在许多球形NF测量场景中,不可能将AUT定位在测量球体的原点,导致最小球体较大,这意味着采样密度更大,采集时间更长。本文提出了一种创新的NF/FF技术,可以大幅降低偏移球面NF测量中的样品密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing the numerical port for inverted microstrip gap waveguide in full-wave simulators Influence of cerebrospinal fluid on specific absorption rate generated by 300 MHz MRI transmit array Sidelobe reduction of unequally spaced arrays for 5G applications An adaptive multi-threshold iterative shrinkage algorithm for microwave imaging applications Reduced-power millimeter-wave reconfigurable systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1