{"title":"Discriminative Invariant Kernel Features: A Bells-and-Whistles-Free Approach to Unsupervised Face Recognition and Pose Estimation","authors":"Dipan K. Pal, Felix Juefei-Xu, M. Savvides","doi":"10.1109/CVPR.2016.603","DOIUrl":null,"url":null,"abstract":"We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations as well. Our theoretical results extend the reach of a recent theory of invariance to discriminative and kernelized features based on unitary kernels. As a special case, a single common framework can be used to generate subject-specific pose-invariant features for face recognition and vice-versa for pose estimation. We show that our main proposed method (DIKF) can perform well under very challenging large-scale semisynthetic face matching and pose estimation protocols with unaligned faces using no landmarking whatsoever. We additionally benchmark on CMU MPIE and outperform previous work in almost all cases on off-angle face matching while we are on par with the previous state-of-the-art on the LFW unsupervised and image-restricted protocols, without any low-level image descriptors other than raw-pixels.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"545 1","pages":"5590-5599"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations as well. Our theoretical results extend the reach of a recent theory of invariance to discriminative and kernelized features based on unitary kernels. As a special case, a single common framework can be used to generate subject-specific pose-invariant features for face recognition and vice-versa for pose estimation. We show that our main proposed method (DIKF) can perform well under very challenging large-scale semisynthetic face matching and pose estimation protocols with unaligned faces using no landmarking whatsoever. We additionally benchmark on CMU MPIE and outperform previous work in almost all cases on off-angle face matching while we are on par with the previous state-of-the-art on the LFW unsupervised and image-restricted protocols, without any low-level image descriptors other than raw-pixels.