Discriminative Invariant Kernel Features: A Bells-and-Whistles-Free Approach to Unsupervised Face Recognition and Pose Estimation

Dipan K. Pal, Felix Juefei-Xu, M. Savvides
{"title":"Discriminative Invariant Kernel Features: A Bells-and-Whistles-Free Approach to Unsupervised Face Recognition and Pose Estimation","authors":"Dipan K. Pal, Felix Juefei-Xu, M. Savvides","doi":"10.1109/CVPR.2016.603","DOIUrl":null,"url":null,"abstract":"We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations as well. Our theoretical results extend the reach of a recent theory of invariance to discriminative and kernelized features based on unitary kernels. As a special case, a single common framework can be used to generate subject-specific pose-invariant features for face recognition and vice-versa for pose estimation. We show that our main proposed method (DIKF) can perform well under very challenging large-scale semisynthetic face matching and pose estimation protocols with unaligned faces using no landmarking whatsoever. We additionally benchmark on CMU MPIE and outperform previous work in almost all cases on off-angle face matching while we are on par with the previous state-of-the-art on the LFW unsupervised and image-restricted protocols, without any low-level image descriptors other than raw-pixels.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"545 1","pages":"5590-5599"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations as well. Our theoretical results extend the reach of a recent theory of invariance to discriminative and kernelized features based on unitary kernels. As a special case, a single common framework can be used to generate subject-specific pose-invariant features for face recognition and vice-versa for pose estimation. We show that our main proposed method (DIKF) can perform well under very challenging large-scale semisynthetic face matching and pose estimation protocols with unaligned faces using no landmarking whatsoever. We additionally benchmark on CMU MPIE and outperform previous work in almost all cases on off-angle face matching while we are on par with the previous state-of-the-art on the LFW unsupervised and image-restricted protocols, without any low-level image descriptors other than raw-pixels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
判别不变核特征:一种无监督人脸识别和姿态估计的无噪声方法
我们提出了一个明确的判别和“简单”的方法来生成不变性的麻烦转换建模为统一。在实践中,该方法也能很好地处理非酉变换。我们的理论结果将最近的不变性理论扩展到基于酉核的判别和核化特征。作为一种特殊情况,可以使用一个通用框架来生成人脸识别的特定对象的姿势不变特征,反之亦然,用于姿势估计。我们表明,我们提出的主要方法(DIKF)可以在非常具有挑战性的大规模半合成人脸匹配和不使用任何地标的未对齐人脸姿态估计协议下表现良好。我们还在CMU MPIE上进行了基准测试,并且在几乎所有情况下,在非角度人脸匹配方面都优于之前的工作,同时我们在LFW无监督和图像限制协议上与之前的最先进技术相当,除了原始像素之外没有任何低级图像描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1