{"title":"Modeling red-light running behavior using high-resolution event-based data: a finite mixture modeling approach","authors":"","doi":"10.1080/15472450.2023.2205019","DOIUrl":null,"url":null,"abstract":"<div><p>To effectively reduce the number of red-light violations and crashes, it is crucial to explore RLR behavior at local intersections, understand the contributing factors, and identify the riskiest intersections by estimating RLR frequency. In this study, a finite mixture modeling method was utilized to understand the contributing factors to RLR behavior and estimate this violating behavior. To develop the RLR estimation models, performance metrics and signal phasing data were collected from the Automated Traffic Signal Performance Measures (ATSPMs) system in two jurisdictions in Arizona: Pima County and the Town of Marana. The results from calibrated models showed that an increase in traffic flow, intersection delay, number of approach lanes, and split failure is associated with an increase in the likelihood of observing red-light violations. In addition, it was found that an increase in cycle length is associated with a decrease in the likelihood of observing the red-light violation. The results of comparing the proposed RLR estimation method with several conventional methods, the Poisson Generalized Linear Model (PGLM), Zero-inflated Poisson Regression Model (ZIPM), and Zero-inflated Negative Binomial Regression Model (ZINB) showed the proposed method outperforms all the models in terms of both model fit and accuracy. The application of the proposed method could be used to analyze the intersections with the highest number of red-light violations. Furthermore, the presented transferability results can be advantageous to transportation agencies within Arizona and urban areas with similar characteristics by providing insight into which model specifications may provide the best RLR estimation accuracy.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 5","pages":"Pages 679-694"},"PeriodicalIF":2.8000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000798","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
To effectively reduce the number of red-light violations and crashes, it is crucial to explore RLR behavior at local intersections, understand the contributing factors, and identify the riskiest intersections by estimating RLR frequency. In this study, a finite mixture modeling method was utilized to understand the contributing factors to RLR behavior and estimate this violating behavior. To develop the RLR estimation models, performance metrics and signal phasing data were collected from the Automated Traffic Signal Performance Measures (ATSPMs) system in two jurisdictions in Arizona: Pima County and the Town of Marana. The results from calibrated models showed that an increase in traffic flow, intersection delay, number of approach lanes, and split failure is associated with an increase in the likelihood of observing red-light violations. In addition, it was found that an increase in cycle length is associated with a decrease in the likelihood of observing the red-light violation. The results of comparing the proposed RLR estimation method with several conventional methods, the Poisson Generalized Linear Model (PGLM), Zero-inflated Poisson Regression Model (ZIPM), and Zero-inflated Negative Binomial Regression Model (ZINB) showed the proposed method outperforms all the models in terms of both model fit and accuracy. The application of the proposed method could be used to analyze the intersections with the highest number of red-light violations. Furthermore, the presented transferability results can be advantageous to transportation agencies within Arizona and urban areas with similar characteristics by providing insight into which model specifications may provide the best RLR estimation accuracy.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.