Yi-xiang Xu, Qiang Ru, Huai-yu Yao, Zhi-jiang Jin, J. Qian
{"title":"Effects of Valve Disc on Flow Characteristics Inside a Swing Check Valve During Opening and Closing Processes","authors":"Yi-xiang Xu, Qiang Ru, Huai-yu Yao, Zhi-jiang Jin, J. Qian","doi":"10.1115/fedsm2021-65674","DOIUrl":null,"url":null,"abstract":"\n The check valve is one of the most important devices for safety protection of the piping system in thermal and nuclear power plants. As the key component of the check valve, the valve disc accounts for a major effect on the flow characteristics especially during the opening and closing processes. In this paper, a typical swing check valve is taken as the research object. In order to make a comparative study, three working conditions of 30% THA (Turbine Heat Acceptance), 50% THA and 100% THA are selected. Focusing on the effects of valve disc, how does the valve disc motion interact with the flow field around the valve disc is analyzed with the help of the dynamic mesh technology. The results show that under the combined action of fluid force and gravity, the check valve can be opened and closed quickly. During the opening process, the maximum total moment of the disc appears between 45° ∼ 50° opening angle, and during the closing process the maximum total moment occurs when the disc fully closed. The flow field near the valve disc has similar variation rules with the rotation of the valve disc in the three working conditions, and the pressure near the valve disc reaches the maximum value at the moment of opening and closing. This study can provide some suggestions for the further optimal design of similar swing check valve.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The check valve is one of the most important devices for safety protection of the piping system in thermal and nuclear power plants. As the key component of the check valve, the valve disc accounts for a major effect on the flow characteristics especially during the opening and closing processes. In this paper, a typical swing check valve is taken as the research object. In order to make a comparative study, three working conditions of 30% THA (Turbine Heat Acceptance), 50% THA and 100% THA are selected. Focusing on the effects of valve disc, how does the valve disc motion interact with the flow field around the valve disc is analyzed with the help of the dynamic mesh technology. The results show that under the combined action of fluid force and gravity, the check valve can be opened and closed quickly. During the opening process, the maximum total moment of the disc appears between 45° ∼ 50° opening angle, and during the closing process the maximum total moment occurs when the disc fully closed. The flow field near the valve disc has similar variation rules with the rotation of the valve disc in the three working conditions, and the pressure near the valve disc reaches the maximum value at the moment of opening and closing. This study can provide some suggestions for the further optimal design of similar swing check valve.