Dynamic Simulation Analysis of Multi-Support Rotary Shaft System

IF 1 Q4 ENGINEERING, MANUFACTURING Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI:10.1115/msec2022-85515
Jian Mei, Yinhuan Zheng, Hong Lu, Zhangjie Li, Wei Zhang, Di Peng, Huang Lin, Qiong Liu
{"title":"Dynamic Simulation Analysis of Multi-Support Rotary Shaft System","authors":"Jian Mei, Yinhuan Zheng, Hong Lu, Zhangjie Li, Wei Zhang, Di Peng, Huang Lin, Qiong Liu","doi":"10.1115/msec2022-85515","DOIUrl":null,"url":null,"abstract":"\n The multi-support rotary shafting system, represented by the ship propulsion shafting, is widely used in the power transmission device of the ship, and its working condition has a great influence on the operational safety of the ship. Therefore, it is necessary to conduct a dynamic analysis of the ship propulsion shafting. The ship propulsion shafting is used as a prototype to design a transmission shaft system fault detection platform based on the dual-engine parallel transmission mode. In order to accurately simulate the load loaded by the magnetic powder brake in the fault detection platform of the transmission shaft system, the control strategy of the magnetic powder brake loading is studied, including conventional PID control, Smith control, fuzzy Smith control and fuzzy Smith with integral action. The control realizes the ideal control effect of the magnetic powder brake. On the basis of the accurate load control effect, use the Adams software to conduct dynamic simulation analysis on the rigid-flexible hybrid model of the ship propulsion shafting. The dynamic characteristics of the shaft system under normal and fault conditions are studied, the research shows that the occurrence of collision and friction faults will increase the force fluctuation range of the shaft system, the shafting vibration will become more complex, and the characteristic frequency will have a large number of high-multiplication frequencies. The above analysis results have certain significance for the fault analysis of the transmission shaft system.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-support rotary shafting system, represented by the ship propulsion shafting, is widely used in the power transmission device of the ship, and its working condition has a great influence on the operational safety of the ship. Therefore, it is necessary to conduct a dynamic analysis of the ship propulsion shafting. The ship propulsion shafting is used as a prototype to design a transmission shaft system fault detection platform based on the dual-engine parallel transmission mode. In order to accurately simulate the load loaded by the magnetic powder brake in the fault detection platform of the transmission shaft system, the control strategy of the magnetic powder brake loading is studied, including conventional PID control, Smith control, fuzzy Smith control and fuzzy Smith with integral action. The control realizes the ideal control effect of the magnetic powder brake. On the basis of the accurate load control effect, use the Adams software to conduct dynamic simulation analysis on the rigid-flexible hybrid model of the ship propulsion shafting. The dynamic characteristics of the shaft system under normal and fault conditions are studied, the research shows that the occurrence of collision and friction faults will increase the force fluctuation range of the shaft system, the shafting vibration will become more complex, and the characteristic frequency will have a large number of high-multiplication frequencies. The above analysis results have certain significance for the fault analysis of the transmission shaft system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多支承转轴系统动力学仿真分析
以船舶推进轴系为代表的多支承旋转轴系广泛应用于船舶的动力传动装置中,其工作状态对船舶的运行安全有很大影响。因此,有必要对船舶推进轴系进行动力学分析。以船舶推进轴系为原型,设计了基于双机并联传动方式的传动轴系故障检测平台。为了准确模拟磁粉制动器在传动轴系统故障检测平台中所加载的负载,研究了磁粉制动器负载的控制策略,包括常规PID控制、Smith控制、模糊Smith控制和积分作用模糊Smith控制。实现了磁粉制动器的理想控制效果。在获得准确载荷控制效果的基础上,利用Adams软件对船舶推进轴系刚柔混合模型进行了动态仿真分析。对正常工况和故障工况下轴系的动态特性进行了研究,研究表明,碰撞和摩擦故障的发生会增大轴系的力波动范围,轴系振动会变得更加复杂,特征频率会有大量的高倍频。上述分析结果对传动轴系统的故障分析具有一定的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
期刊最新文献
Transfer Learning For Predictive Quality In Laser-Induced Plasma Micro-Machining Simultaneous Micro- and Nanoscale Silicon Fabrication by Metal-Assisted Chemical Etch Thermodynamic Evaluation of Electroosmotic Peristaltic Pumping for Shear-Thinning Fluid Flow Electric-field and Mechanical Vibration-assisted Atomic Force Microscope (AFM)-based Nanopatterning Fabrication of Bioinspired Micro/nano-textured Surfaces Through Scalable Roll Coating Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1