Hilary A. Hayford , Sarah E. Gilman , Emily Carrington
{"title":"Tidal cues reduce thermal risk of climate change in a foraging marine snail","authors":"Hilary A. Hayford , Sarah E. Gilman , Emily Carrington","doi":"10.1016/j.ecochg.2021.100003","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate predictions of the effects of warming temperatures under climate change on an individual species require an accurate characterization of its current and future thermal environment. Behavioral responses to environmental heterogeneity are an important but poorly understood determinant of species’ body temperatures and thermal risks. In this paper we describe the steps necessary for determining a species’ opportunities for behavioral buffering of climate change, and provide examples using a combination of previously published studies and new results for the intertidal snail <em>Nucella ostrina</em>. We find that <em>N. ostrina</em>’s current patterns of daily microhabitat selection have the potential to buffer it from warming temperatures under climate change. <em>N. ostrina</em>’s foraging behavior is highly correlated with the 14.5 d semilunar tidal cycle, shielding it from both current and future thermal stress.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"1 ","pages":"Article 100003"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecochg.2021.100003","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Ecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666900521000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Accurate predictions of the effects of warming temperatures under climate change on an individual species require an accurate characterization of its current and future thermal environment. Behavioral responses to environmental heterogeneity are an important but poorly understood determinant of species’ body temperatures and thermal risks. In this paper we describe the steps necessary for determining a species’ opportunities for behavioral buffering of climate change, and provide examples using a combination of previously published studies and new results for the intertidal snail Nucella ostrina. We find that N. ostrina’s current patterns of daily microhabitat selection have the potential to buffer it from warming temperatures under climate change. N. ostrina’s foraging behavior is highly correlated with the 14.5 d semilunar tidal cycle, shielding it from both current and future thermal stress.