Entwicklung eines Regressionsmodells für die Vollständigkeitsanalyse des globalen OpenStreetMap- Datenbestands an Nahverkehrs-Busstrecken / Development of a Regression Model for the Analysis of Local Bus Route Data Completeness on OpenStreetMap

Oliver Fritz, Michael Auer, A. Zipf
{"title":"Entwicklung eines Regressionsmodells für die Vollständigkeitsanalyse des globalen OpenStreetMap- Datenbestands an Nahverkehrs-Busstrecken / Development of a Regression Model for the Analysis of Local Bus Route Data Completeness on OpenStreetMap","authors":"Oliver Fritz, Michael Auer, A. Zipf","doi":"10.14627/537707025","DOIUrl":null,"url":null,"abstract":"The quality of geodata on OpenStreetMap (OSM) is characterized by heterogeneity. Results of conventional approaches of quality assessment based on the comparison with reference data can thus not be applied to the entire dataset. Hence, the completeness of OSM data is usually analysed using intrinsic methods. Here, we propose a novel approach that consists in the generation of reference data via a regression model. Using demographic and socio-economic raster datasets and sporadically available GTFS data, the number of local bus routes is predicted on the cells of a global hexagon grid. The results are compared with the OSM dataset.","PeriodicalId":36308,"journal":{"name":"AGIT- Journal fur Angewandte Geoinformatik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGIT- Journal fur Angewandte Geoinformatik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14627/537707025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quality of geodata on OpenStreetMap (OSM) is characterized by heterogeneity. Results of conventional approaches of quality assessment based on the comparison with reference data can thus not be applied to the entire dataset. Hence, the completeness of OSM data is usually analysed using intrinsic methods. Here, we propose a novel approach that consists in the generation of reference data via a regression model. Using demographic and socio-economic raster datasets and sporadically available GTFS data, the number of local bus routes is predicted on the cells of a global hexagon grid. The results are compared with the OSM dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对本地路线数据分析的饱和性模型进行回归分析
OpenStreetMap (OSM)的地理数据质量具有异构性。因此,基于与参考数据比较的传统质量评估方法的结果不能应用于整个数据集。因此,通常使用内在方法分析OSM数据的完整性。在这里,我们提出了一种新的方法,包括通过回归模型生成参考数据。利用人口统计和社会经济栅格数据集和零星可用的GTFS数据,在全球六边形网格的单元格上预测本地公交路线的数量。结果与OSM数据集进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AGIT- Journal fur Angewandte Geoinformatik
AGIT- Journal fur Angewandte Geoinformatik Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Ein Open-Source-Workflow zur Ermittlung des Verkehrsaufkommens mittels des Internet of Things / An Open Source Workflow for Measuring the Traffic Volume Based on Internet of Things Herausforderungen und Chancen einer Parkraumanalyse auf Basis offener Daten / Parking Space Analysis Using Open Data: Challenges and Opportunities Emotionswahrnehmung für Fahrradsicherheit und Mobilitätskomfort / Emotion Sensing for Bicycle Safety and Mobility Comfort Modellierung des Waldbrandrisikos im Zuge des Klimawandels am Beispiel des Nationalpark Harz / Modelling the Forest Fire Risk in the Course of Climate Change Using the Example of the Harz National Park Geodatenintegration in 3D-Spielewelten / Gamified Campus Science City Itzling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1