Global Weather-Based Trading Strategies

Ming Dong, A. Tremblay
{"title":"Global Weather-Based Trading Strategies","authors":"Ming Dong, A. Tremblay","doi":"10.2139/ssrn.3111467","DOIUrl":null,"url":null,"abstract":"We estimate the profitability of global index-level trading strategies formed on daily weather conditions across 49 countries. We use pre-market weather conditions (sunshine, wind, rain, snow, and temperature) and the statistical relationship between weather and returns to predict index returns each day. In the out-of-sample test for our 1993-2012 sample, a global weather-based hedge strategy produces a mean annual return of 15.2% compared to a mean world index return of 3.1%, corresponding to a Sharpe ratio of 0.462 relative to 0.005 for the world index. Our findings confirm that multiple weather conditions exert economically important impacts on stock returns around the globe.","PeriodicalId":10477,"journal":{"name":"Cognitive Social Science eJournal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Social Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3111467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We estimate the profitability of global index-level trading strategies formed on daily weather conditions across 49 countries. We use pre-market weather conditions (sunshine, wind, rain, snow, and temperature) and the statistical relationship between weather and returns to predict index returns each day. In the out-of-sample test for our 1993-2012 sample, a global weather-based hedge strategy produces a mean annual return of 15.2% compared to a mean world index return of 3.1%, corresponding to a Sharpe ratio of 0.462 relative to 0.005 for the world index. Our findings confirm that multiple weather conditions exert economically important impacts on stock returns around the globe.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球天气交易策略
我们估计了全球指数级交易策略在49个国家的日常天气条件下形成的盈利能力。我们使用上市前的天气条件(日照、刮风、下雨、下雪和温度)以及天气和收益之间的统计关系来预测每天的指数收益。在我们1993-2012年样本的样本外测试中,基于全球天气的对冲策略的平均年回报率为15.2%,而世界指数的平均回报率为3.1%,对应的夏普比率为0.462,而世界指数的夏普比率为0.005。我们的研究结果证实,多种天气条件对全球股票回报产生重要的经济影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Cost of Overconfidence in Public Information The Compliance Consequences of Fault Assignment in Sanctions Examining the Link Between Organizational Citizenship Behavior and Work Performance of Employees in the Private Schools, Mediated by Workplace Environment An Ordinal Theory of Risk and Correlation Aversion Persuasion Under Costly Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1