A Theoretical Investigation on Sound Transmission Loss through Multi-walled Plates with Air Space

T. Natsuki, Jun Natsuki
{"title":"A Theoretical Investigation on Sound Transmission Loss through Multi-walled Plates with Air Space","authors":"T. Natsuki, Jun Natsuki","doi":"10.9734/AJR2P/2019/V2I129801","DOIUrl":null,"url":null,"abstract":"In this study, an analytical model is proposed to investigate the sound transmission loss through multi-walled plates with air layers or decompression air layers, under the diffuse incidence field. Using the present approach, the influences of various parameters, such as the wall thickness, the decompressed air and the thickness of air space, on the sound transmission loss through are simulated and discussed in detail. It is seen that, due to the wave frequency of mass-air-mass resonance between double-walled glass plates, the sound transmission loss of the plates can be improved at low frequency range. The sound transmission loss tends to increase with decreasing air pressure because the sound is not transmitted through vacuum space. The design method can be used to investigate the effect of various geometric and material parameters on the sound transmission loss. The advantage of the simulation procedure is easily used for designing the layer structures with different parameter to improve the sound insulation effect.","PeriodicalId":8529,"journal":{"name":"Asian Journal of Research and Reviews in Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research and Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/AJR2P/2019/V2I129801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, an analytical model is proposed to investigate the sound transmission loss through multi-walled plates with air layers or decompression air layers, under the diffuse incidence field. Using the present approach, the influences of various parameters, such as the wall thickness, the decompressed air and the thickness of air space, on the sound transmission loss through are simulated and discussed in detail. It is seen that, due to the wave frequency of mass-air-mass resonance between double-walled glass plates, the sound transmission loss of the plates can be improved at low frequency range. The sound transmission loss tends to increase with decreasing air pressure because the sound is not transmitted through vacuum space. The design method can be used to investigate the effect of various geometric and material parameters on the sound transmission loss. The advantage of the simulation procedure is easily used for designing the layer structures with different parameter to improve the sound insulation effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带空气空间的多壁板传声损失的理论研究
本文提出了一种分析模型,研究了在漫射入射场作用下,声音通过带有空气层或减压空气层的多壁板的传输损失。利用该方法,模拟并详细讨论了壁厚、减压空气和空气空间厚度等参数对声传输损失的影响。可见,由于双层玻璃板之间质-气-质共振的波频,在低频范围内可以改善双层玻璃板的传声损失。由于声音不是通过真空空间传播的,因此声音的传播损失随气压的减小而增大。该设计方法可用于研究各种几何参数和材料参数对声传输损失的影响。利用仿真程序的优势,可以方便地设计不同参数的层状结构,以提高隔声效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radio-loud Quasars and Expansion of Universal Space-time Radio-loud Quasars and Expansion of Universal Space-time Comparative Test of Total Suspended Solids (TSS) In Suwung Estuary Using Sentinel-2B and Landsat 8 Imagery Estimating the Effect of Copolar Attenuation Caused by Rain Events on Radio Wave Propagation Light Fidelity-based Home Automation System with Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1